生態基流計算
『壹』 提問水利專業,水庫泄洪時,下遊河道的流速如何計算
1修建水利工程對自然環境的影響分析1.1對氣候的影響一般情況下,地區性氣候狀況受大氣環流所控制,但修建大、中型水庫及灌溉工程後,原先的陸地變成了水體或濕地,使局部地表空氣變得較濕潤,對局部小氣候會產生一定的影響,主要表現在對降雨、氣溫、風和霧等氣象因子的影響[1]。1.1.1對降雨量的影響(1)降雨量有所增加:這是由於修建水庫形成了大面積蓄水,在陽光輻射下,蒸發量增加引起的。(2)降雨地區分布發生改變:水庫低溫效應的影響可使降雨分布發生改變,一般庫區蒸發量加大,空氣變得濕潤。實測資料表明,庫區和鄰近地區的降雨量有所減少,而一定距離的外圍區降雨則有所增加,一般來說,地勢高的迎風面降雨增加,而背風面降雨則減少。(3)降雨時間的分布發生改變:對於南方大型水庫,夏季水面溫度低於氣溫,氣層穩定,大氣對流減弱,降雨量減少;但冬季水面較暖,大氣對流作用增強,降雨量增加。1.1.2對氣溫的影響水庫建成後,庫區的下墊面由陸面變為水面,與空氣間的能量交換方式和強度均發生變化,從而導致氣溫發生變化,年平均氣溫略有升高。1.2對水文的影響水庫修建後改變了下遊河道的流量過程,從而對周圍環境造成影響。水庫不僅存蓄了汛期洪水,而且還截流了非汛期的基流,往往會使下遊河道水位大幅度下降甚至斷流,並引起周圍地下水位下降,從而帶來一系列的環境生態問題:下游天然湖泊或池塘斷絕水的來源而乾涸;下游地區的地下水位下降;入海口因河水流量減少引起河口淤積,造成海水倒灌;因河流流量減少,使得河流自凈能力降低;以發電為主的水庫,多在電力系統中擔任峰荷,下泄流量的日變化幅度較大,致使下遊河道水位變化較大,對航運、灌溉引水位和養魚等均有較大影響;當水庫下遊河道水位大幅度下降以至斷流時,勢必造成水質的惡化。1.3泥沙淤積問題以三門峽水庫為例說明水庫淤積問題。水庫於1960年蓄水,一年半後,15億t泥沙全部淤在潼關—三門峽河段,潼關河床抬高4.5m。淤積帶延伸到上游的渭河口,形成攔門沙,兩岸地下水位也隨之抬高,從而造成兩岸農田次生鹽鹼化1.4對水體的影響河流中原本流動的水在水庫里停滯後便會發生一些變化。首先是對航運的影響,比如過船閘需要時間,從而對上、下行航速會帶來影響;水庫水溫有可能升高,水質可能變差,特別是水庫的溝汊中容易發生水污染,如水華現象的出現;水庫蓄水後,隨著水面的擴大,蒸發量的增加,水汽、水霧就會增多,等等。這些都是修壩後水體變化帶來的影響。水庫蓄水後,對水質可產生正負兩方面的影響。(1)有利影響:庫內大體積水體流速慢,滯留時間長,有利於懸浮物的沉降,可使水體的濁度、色度降低;庫內流速慢,藻類活動頻繁,呼吸作用產生的CO2與水中鈣、鎂離子結合產生CaCO3和MgCO3並沉澱下來,降低了水體硬度。(2)不利影響:庫內水流流速小,降低了水、氣界面交換的速率和污染物的遷移擴散能力,因此復氧能力減弱,使得水庫水體自凈能力比河流弱;庫內水流流速小,透明度增大,利於藻類光合作用,壩前儲存數月甚至幾年的水,因藻類大量生長而導致富營養化;被淹沒的植被和腐爛的有機物會大量消耗水中的氧氣,並釋放沼氣和大量二氧化碳,同樣導致溫室效應;懸移質沉積於庫底,長期累積不易遷移,若含有有毒物質或難降解的重金屬,可形成次生污染源。參考資料:/1.html
『貳』 (一)計算方法
1.Tennant法
估計河流生態用水的常用方法是Tennant法,又稱Montana法,這是一種水文學方法。該法在考慮保護魚類、野生動物和有關環境資源的河流流量狀況下,按照年平均流量的百分數推薦河流基流。Tennant方法主要用來評價河流水資源開發利用程度或作為在優先度不高的河段研究河道流量推薦值使用,或作為其他方法的一種檢驗。
Tennant法根據流量級別及其對生態的有利程度,將河道內生態環境需水量確定為不同的級別,從「極差」到「最大」共8個級別,並對不同級別推薦了河流生態用水流量佔多年平均流量的百分比。
Tennant方法的計算過程相對簡單,即只要根據多年平均流量,利用相應級別的百分比即可確定出年內不同時段的生態環境需水量,對全年求和即可求得全年的生態環境需水量。
2.Q90法
Q90法源於美國的7Q10法,7Q10法為美國考慮水質因素確定河道內生態環境需水的方法,即採用90%保證率最枯連續7 d的平均流量作為河流最小流量設計值。美國環保署(EPA)通過研究表明基於水文學的7Q10法和基於生物學的4B3法的計算結果十分接近,因而建議以此作為污染物排放對水生物長期影響效果的水質標准設計流量。此後,美國聯邦政府和許多州通過立法將7Q10法作為確定河道內基流的計算方法。7Q10法在20世紀70年代傳入我國並在許多大型水利工程建設的環境影響評價中得到應用。由於該標准要求比較高,鑒於我國的經濟發展水平比較落後、南北方水資源情況差別較大的現狀,對該法進行了修改,一般採用近10年最枯月平均流量或90%保證率最枯月平均流量。
Q90法也是一種水文學計算方法,即將90%保證率的最小月平均流量作為河道內生態環境需水流量值。其計算過程為,首先由各河段水文歷史資料,在各年中找出其月平均流量最小月份的流量值,然後利用這些最小月平均流量進行頻率計算,其90%保證率的流量值即可作為河道內生態環境需水流量,由此流量值即可求得全年的生態環境需水量。
3.濕周法
濕周法則是一種水力學計算方法,其主要依據是水力學研究中得到的基本認識。通常濕周隨著河流流量的增大而增加,然而當濕周超過某臨界值後,即使河流流量的巨幅增加也只能導致濕周的微小變化。注意到濕周臨界值的這一特殊意義,我們只要保護好作為水生物棲息地的臨界濕周區域,也就基本上滿足了臨界區域水生物棲息保護的最低需求。將河流臨界濕周作為水生物棲息地質量指標估算相應河流生態需水量時,所得的流量會受到河道形狀的影響。這種方法一般適用於寬淺河道。
濕周法計算的關鍵是要確定出流量—濕周關系,這可以先根據河道斷面資料確定出水位—濕周關系,並結合水文學中的水位—流量關系即可確定出流量—濕周關系。由流量—濕周關系圖,在其中找出變化曲折的臨界點,將此臨界點的流量值作為保持河道內生態需水的流量值,由此流量值即可求得全年的生態環境需水量。
『叄』 流域的生態環境需水量計算
生態需水與環境需水雖相互聯系,但有不同,前者偏重於自然方面,後者側重污染與水環境容量[1]。流域生態環境需水量主要分為河道內需水與河道外需水兩大部分。
(1)河道內的生態用水可從河流功能的各方面來分項計算。包括:
——河道基流。根據多年最小徑流Rmin與多年平均最小月徑流Rmin,a,確定求取Rmin/Rmin,av=α,在只有多年月系列的情況下,河道生態最小基流量用a確定。
——沖沙水量(Rsid)。從河流多年流量與泥沙系列中選擇實測大斷面與相應的流量、泥沙進行定量。
——河道環境需水量。主要是保持河流水環境容量的需水量,可參照以下方法計算:①Tennant法;②月流量保證率設定計算;③100%保證率最小月流量等方法。
——與河流相連接的湖泊、濕地的生態需水量。前者用設定水位來計算,後者由濕地水量平衡來確定。
——河流生物需水量。綜合考慮水量與水質。簡單的方法採用歷史資料鑒別。
——城市生態環境需水量。主要是綠化植被的需水量。面積按城市規劃計算。
(2)河道外的生態用水。從河道引出的水量,主要是生活與生產用水,過去並未專門提供生態用水的計算,但是河流中的水量來自河道外的流域面積。流域內的土地覆蓋與土地利用實際要影響匯入河道中的水量。主要是綠化——林草、農田及水土保持(含少量的雨水利用)需用(耗)的水量,可按生態環境保護的規劃(規劃部門提供)分別在計算河道內、外各種生態系統環境需水的基礎上進行匯總。
文獻[4]綜合不同學者的觀點,認為生態需水量是生態系統中客觀存在的水量,是水資源的一部分,它是一個時間變數,隨生態系統的發展而動態變化;生態用水量具有一定的目標性,它是一個空間變數,根據不同需求,可將生態用水量劃分為最大、最小和適宜生態用水量。文中闡述了生態需水量估算的理論基礎和方法,並指出:對於流域而言,生態需水的計算分河道內和河道外。河道外的生態需水量應首次選定天然植被並進行本底分區,然後由區域天然植被生長的年降水量、氣溫及熱量平衡資料結合區域水量平衡算出植被的需水量(文獻[1]中也引用了國外Baird等的不同植被蒸騰量的確定與估算)。河道內按不同生態功能計算需水量。二者之和扣除重復才是整個流域的生態需水量。
王西琴等認為[2],根據人類對水資源的利用和影響程度,可以將地表水資源利用劃分為4個階段:①未被人類利用階段;②合理利用階段;③極限利用階段;④過度利用階段。由此分析得出:①雖然地表水能被人類利用,但是有一個限度。國際上認為,地表水合理的開發利用率應為25%。考慮到我國北方地區水資源短缺的實際情況,其合理利用率為40%。只有低於合理的利用率,才能保證河流系統的穩定和平衡。②河道內必須留有足夠的水量,以保證水體固有的生態和環境功能。③人類不能無節制地利用水資源和追求河道水體的功利性功能,而必須重視生態系統本身所需要的水,以保證水資源的良性循環,達到水資源的持續利用。
河流的功能有兩個方面。一是功利性功能,如為生產、生活提供用水,為航運、水上娛樂、養殖等提供水域,對水力發電提供能源等;二是生態環境功能,如為水生生物提供生存環境,對污染物的稀釋自凈作用,保證河口地區生態系統穩定,以及輸沙排鹽、濕潤空氣、補充土壤含水等功能。根據上述分析,河道環境需水是指為保護和改善河流水體水質、為維持河流水沙平衡、水鹽平衡及維持河口地區生態環境平衡所需要的水量。可以概括為河道基本環境需水、輸沙需水及入海需水。三者之間有重合部分,其中基本環境需水包含於輸沙需水和入海需水之中,輸沙需水和入海需水既有重合部分,又有包含與被包含的關系,其主要決定於河流的主導功能。河道最小環境需水量是指為維系和保護河流的最基本環境功能不受破壞所必須在河道內保留的最小水量的閾值。河道生態需水是指維持水生生物正常生長及保護特殊生物和珍稀物種生存所需要的水量。如果以水資源開發利用階段衡量,其相當於水資源利用的第二階段河道內留有的水量。河道最小生態需水是指維系和保護河流的最基本生態功能不受破壞所必須在河道內保留的最小水量的閾值。如果以水資源開發利用階段衡量,其相當於水資源利用的第三階段河道內留有的水量。
事實上,生態、環境需水隨著生態環境保護目標的不同而發生相應的變化。對生態環境功能的要求越高,則相應的生態需水量也越多,反之亦然。因此,生態(環境)需水不是一個定值。而最小生態(環境)需水是保證生態系統平衡所必須具有的最低閾值。因此,在一定階段,如果對生態環境功能的要求不變,則最小生態(環境)需水應是一個定值。
『肆』 河流位置不同,生態流量怎麼確定
河流生態系統的生物組成、結構和功能依賴於河流水流的天然動態變化特徵,即河流水文情勢。變異性范圍法(Range of Variability Approach,RAV)被廣泛應用於評估河流生態系統是否得到維護。將RVA法的思路擴展到生態流量的計算,提出了一種簡便、立足整體河流水文情勢的生態流量估算方法。該方法使用均值與RVA閾值差計算了生態流量值,為維持河流健康生態系統提供支持。將該方法應用於南水北調西線一期工程中泥曲河的生態流量估算,得到引水壩址仁達處年可調徑流量為6.44億m3,與其他生態需水估算方法的結論基本一致。另提出了可支配系數反映河流流量可調用狀況。南水北調西線一期工程計劃從泥曲調水8億m3・a-1,從RVA法的理念來看,該方案對仁達至朱巴河段的生態系統將構成威脅,需謹慎實施。
『伍』 90%保證率最枯月平均流量怎麼計算
( 1 )農村水電站的最小生態流量應考慮生態、水生生物等用水需求,比較項目所在地天然來水量,結合當地氣候、水文等多方面因素確定;要符合當地水資源論證、環保評估及河道規劃等要求,並滿足經批準的建設項目、運行電站的水資源論證和環境影響評價的要求。
( 2 )農村水電站的最小生態流量由設計單位按以下方法計算確定:原則上按河道天然同期多年平均流量的10%~20%確定。具體採用不小於90%保證率最枯月平均流量和多年平均天然徑流量的10%兩者之間的大值,確定農村水電站的最小生態泄(放)流量,但無敏感生態需水。取水壩(附屬水庫)或閘壩蓄水回水區可按最小水深控;季節性河流或乾旱地區,要把保持該地區的生態環境現狀作為最低要求,並在保持現狀生態用水量的基礎上適當予以增加;水資源年內豐枯變化較大,且實測最小流量小於工程式控制斷面多年平均流量10%的河流,經現場查勘和綜合分析,可以把工程式控制斷面實測最小流量作為生態流量。
『陸』 (二)河道內生態環境需水量計算
河流在從源頭流向河口的過程中,隨著匯流面積的增大,一般水量也隨之增大。即水量是匯水面積或河長的單調增函數。設定一個河道生態環境需水流量為Q(P),即可在河流上找到一個斷面,且斷面以下的河道水量一般能滿足Q≥Q(P)。因此,任何一條或一段河流只需選擇一個斷面進行生態環境流量的計算即可。對較大的河流或沿程水量、水功能差異懸殊的河流,則可以分段計算。
因為大沽夾河源短流急,流域位於山東半島,處於東經120°50′~121°20′、北緯37°00′~37°40′之間。所以,只取一個斷面即可。根據引水入河工程取水點的影響范圍的實際情況,這里取夾河福山站斷面水文站進行計算。計算結果見表8-9。
表8-9 大沽夾河下游各斷面生態環境需水量計算結果 單位:m3/s
對於本次研究的河流,基本屬於有水文站點的季節性河流。
推薦的基流分為汛期和非汛期,其中汛期為4~10月,非汛期為10月~次年3月。
汛期總流量(3.81+96.0+53.3+22.6)×31=5447.01m3/s
5447.01×40%=2178.704m3/s
非汛期總流量(4.48+1.16)×31=174.84m3/s
174.84×20%=34.968m3/s
全年5447.01+174.84=5621.85m3/s
5621.85×30%=1686.555m3/s
『柒』 怎麼理解河道天然同期多年平均流量
( 1 )農村水電站的最小生態流量應考慮生態、水生生物等用水需求,比較項目所在地天內然來水量,結合容當地氣候、水文等多方面因素確定;要符合當地水資源論證、環保評估及河道規劃等要求,並滿足經批準的建設項目、運行電站的水資源論證和環境影響評價的要求。
( 2 )農村水電站的最小生態流量由設計單位按以下方法計算確定:原則上按河道天然同期多年平均流量的10%~20%確定。具體採用不小於90%保證率最枯月平均流量和多年平均天然徑流量的10%兩者之間的大值,確定農村水電站的最小生態泄(放)流量,但無敏感生態需水。取水壩(附屬水庫)或閘壩蓄水回水區可按最小水深控制;季節性河流或乾旱地區,要把保持該地區的生態環境現狀作為最低要求,並在保持現狀生態用水量的基礎上適當予以增加;水資源年內豐枯變化較大,且實測最小流量小於工程式控制制斷面多年平均流量10%的河流,經現場查勘和綜合分析,可以把工程式控制制斷面實測最小流量作為生態流量。
『捌』 求教:小流域的洪量該如何計算,其經驗公式是什麼
1 流域水環境和水生態情勢 隨著我國社會經濟的快速發展,流域水環境質量不斷下降,河流水質普遍下降,藍藻水華頻繁暴發,水污染事故時有發生,飲用水安全頻頻告急。嚴峻的水環境形勢和水安全危機,己經制約著我國社會經濟的可持續發展,威脅著人們的生存安全。 1.1 流域河流水污染狀況 2005年環境狀況公報顯示,我國七大水系的411個地表水監測斷面中,一半以上河段受到不同程度的污染,Ⅰ~Ⅲ類、Ⅳ~V類和劣V類水質的斷面比例分別為41%、32%和27%。其中,珠江、長江水質較好,遼河、淮河、黃河、松花江水質較差,海河污染嚴重。 1.2 流域湖泊富營養化突出 目前我國湖泊水體的富營養化嚴重,發展趨勢迅速。對全國200多個重點湖泊的監測分析表明,已達富營養化的湖泊佔65%,東部地區的湖泊已有80%處於不同程度的富營養化階段,許多湖泊成為超富營養型,超越在湖泊的自然演替過程中所能達到的營養水平。 1.3 城市水環境質量還在不斷下降 2005年環境狀況公報顯示,各大流域的主要污染河段均集中在城市河段,監測統計的5個城市內湖中,昆明湖(北京)和玄武湖(南京)為V類水質,西湖(杭州)、東湖(武漢)和大明湖(濟南)為劣V類水質。 1.4 飲用水水質得不到保障 2005年環境狀況公報顯示,全國110個環保重點城市中有20個城市的集中式飲用水水源地的水質達標率達不到50%;113 個環保重點城市月均監測取水總量為16.1 億噸,不達標水量為3.2 億噸,佔20%。2005年初有關調查顯示,調查范圍內的45個城市飲用水水源存在不同程度的有機物污染,其中部分有機物具有「致癌、致畸、致突變」毒性。 1.5 水污染事故時有發生 我國流域水污染事故屢屢發生,黃河流域1993年以來,發生較大的水污染事故40多起,而2005年吉林石化發生爆炸事故造成的松花江嚴重水污染事故、1990年7月和2007年5月太湖藍藻水華的大規模爆發事件,極大影響了人們的生活安全,造成了巨大的經濟損失,影響特別重大,引起人們的廣泛關注。 2 流域水循環過程和污染成因分析 流域是匯水和水體運動形成的特定區域,地表徑流和河流通道是流域物質輸移的主要特徵,水體運動是污染物轉移的主要載體,污染物從源頭到湖泊的主要途徑是流域河流系統,掌握流域水動力特性是流域水環境治理的關鍵,了解流域水循環過程和污染成因是流域水環境治理的基礎。 盡管我國 「973」計劃和「十五」期間通過重大水專項計劃針對湖泊富營養化發生過程和藍藻暴發機制、水源水質改善、面源污染控制和重污染湖泊生態重建等方面開展了研究,取得了科學和技術突破,為河湖水環境治理提供了重要科技支持。但缺乏對流域水循環過程和污染成因的系統分析,缺少從流域尺度對河湖污染控制的全面研究,沒有掌握流域營養物質發生和輸移過程與不同界面之間轉化調控機理,未能提出流域水環境治理的系統科學方案。 因此,應將流域水循環過程和污染成因分析作為重點基礎科學問題開展研究,查明流域點源和面源營養物質發生與入河規律,探討河流河網營養物質輸移過程,揭示陸域與水域、河流與湖泊、地表與地下不同界面之間營養物質的轉化機理,掌握流域水動力特性對流域污染物輸移轉化的影響規律,為建立具有我國特點的流域水環境綜合治理理論體系,保障流域生態環境安全和社會經濟發展提供科學依據。 3 水利工程的環境影響和生態效應 水利工程在社會經濟發展中發揮了巨大作用,保障了防洪排澇安全,提供了生活生產用水,改變了貧窮落後和靠天吃飯的局面。但傳統水利工程確實給生態和環境造成一定的負面影響,阻斷了水體自然流動,削弱了生態系統的綜合功能,惡化了局部水域環境質量。具體主要表現在: (1) 河道順直化工程加快了行洪流速,增加了行洪流量,降低了受淹時間,提高了防洪安全,保障了身命財產,穩定了社會秩序;但同時改變了自然水系,單一了生態結構,減少了生物群落,縮短了滯流時間,削弱了凈污能力,降低了環境質量,導致了生態退化。 (2) 河道硬質化工程減少了水體滲漏,提高了水利用率,減較了邊坡沖刷,維護了堤防穩定,簡化了河湖管理;但投入了巨大資金,改變了自然系統,單一了河流功能,侵佔了濱水濕地,阻斷了水陸通道,滅絕了河流生境,削弱了凈污能力,降低了環境質量,破環了景觀結構,造成了生態退化。 (3) 流域系統水庫(湖泊)調控工程提高了水資源利用率,改善了局地氣候,保障了社會經濟快速發展,提升了人們生活水準,實現了豐枯水量調劑;但減少了河流基流生態水量,加劇了河道斷面萎縮,增加了污水排放總量,改變了農業灌排系統,提高了面源入河比例,加快了面源入河速度,惡化了下遊河泊水環境質量。 (4) 流域水系閘、壩、站控制工程調控了洪峰洪量過程,控制了水體隨意流動,提升了局部水域水位,改善了灌既用水條件,增加了水體停留時間,抑制了污染物輸移擴散,阻止了污染物易地轉移;但同時也攔截了水體自然流動,阻斷了水生生物傳輸,蓄積了水體污染物質,惡化了當地水環境質量,增加了水污染風險事故。 因此,必須深刻變革水利建設理念,充分和全面認識到水利工程的積極作用和負面效應,才能在經濟社會發展和生態環境保護的博弈中立於不敗之地,實現水利真正全面地為人類生存和發展服務。 4 水利部門在流域水環境治理中的地位和責任 (1) 水利工程式控制制著流域自然水體流動過程,掌控污染物輸移快慢和擴散區域,因此對流域水環境治理具有重要地位。 (2) 水利部門掌握水資源配額計劃,供水多少決定城市污水多少,灌水多少決定農田退水多少,以控制供給或節約用水來減少污染物排放是十分有效的科學途徑。 (3) 法律授予水利部門管理河湖水域的權力,限制向水域排污和優化排污口是法律賦予的責職。 (4) 為國家社會經濟可持續發展提供水資源是水利部門的基本責職,水量和水質是水資源同等重要的要素,水質保障是水利部門未來的主要任務。 (5) 水利部門必須通過流域坑、塘、溝、渠和河道系統,研發達標尾水和農田退水的水質凈化技術,解決排放標准與河湖水質標准差異的問題。 (6) 構建流域水生態系統良性循環的體系,水利部門具有重要作用,水利功能與生態功能的良好協同是流域健康生態系統的關鍵。 5 水利部門在流域水質改善中的關鍵性工作 5.1 流域水系和水環境綜合治理規劃 流域水系綜合治理規劃應在「完整連通、等級分明、形態調整、分級定位」的指導思想下,重點完成流域水系行洪體系規劃、流域水系截污凈化體系規劃、流域水系生態廊道範圍劃定、流域水系規劃水環境質量影響等方面內容。 流域水環境綜合治理規劃應在「污染負荷、水體功能、宏現控制、區域協調」的指導思想下,重點完成不同水文尺度條件下河流水動力特徵、流域水系河流允許納污能力、污染物容量總量控制、排放口優化布置與污染物削減方案等方面內容。 5.2 流域污染源綜合治理和系統截留 流域污染源綜合治理和系統截留應重點關註:(1) 節水減污型社會建設構想,(2) 達標尾水深度處理、輸導凈化和潛設排放技術,(3) 農業產業結構調整與生態布局,(4) 農田面污染源控制和削減技術,(5) 農業節水減污和農田退水循環利用,(6) 灌區溝渠排灌系統生態化建設,(7) 農村窪地坑塘系統濕地化建設,(8) 流域農村與城鎮協同控污系統。 5.3 流域河流綜合治理與水質改善技術 流域河流綜合治理與水質改善應在分析流域河流類型及特點(幾何尺度、時間尺度、發育程度、功能定位、區域位置、水動力特性、污染程度等)、河流水文及水動力特性、河流生態特性的基礎上,著力研發河道土質邊坡穩定和截污凈化、河道已建硬質護坡結構分析和生態修復、河道擬建硬質護坡生態建設、河道濱水帶恢復、河床基質生態系統構建、河道景觀廊道系統建設、河道生態流速和水位調控、重污染河道水質強化凈化技術、城市河道綜合治理與水質改善技術、流域不同尺度河道綜合治理與水質改善技術、不同水動力條件下水質凈化技術等關鍵技術。 5.4 流域水利工程的環境影響和生態效應 水利工程是流域水利事業的重要組成部分,閘、壩、堤防護坡、河道襯砌等水利工程在流域防洪、排澇、抗旱、發電、供水、漁業、航運等方面發揮了巨大作用。然而水利工程改變了原有的生態系統平衡,對水生態環境產生一定的影響,這些影響既有正面效應和也存在負面效應。正面效應通常有洪泄枯蓄、引水治污、水體流動、蓄渾放清等;負面效應最主要是破壞水體的自然循環,佔用了生態用水,降低水生態系統的凈化能力,破壞了水生生物的生境,造成水生態環境的惡化。流域水利工程的環境影響和生態效應的判定,應以流域水利工程類型和結構特點的分析為基礎。 如何減少水利工程對水生態環境的負面影響,增大正面效益是當今水利工作者面臨的重大問題之一。應重點研究典型水利工程對水生態系統凈污能力的影響規律及修復理論,探討典型水利工程對水生植物的脅迫機理以及水生植物的響應機制,分析工程在水生態系統中的環境功能,揭示典型水利工程引起自然水流結構變化和水生植被消亡所造成的水體凈污能力退化的規律,尋求水利工程與生態工程功能協同技術改善水環境和修復水生態系統。 5.5 流域水力調控技術 流域水力調控中應重點解決以下技術問題:(1) 調水改善水環境質量的關鍵問題和前提條件,(2) 調水水量的確定方法,(3) 水量增加和水體流動的環境效應,(4) 不同空間尺度跨流域調水工程,(5) 不同空間尺度流域內跨區域調水工程,(6) 不同時間尺度流域蓄洪濟枯工程,(7) 不同時空尺度調水的生態風險,(8) 平原河網水力調控和水體有序流動技術。 5.6 流域水環境系統模擬和管理 流域水環境系統模擬和管理主要包括:(1) 流域水量水質耦合模擬,(2) 不同水動力條件下流域控制斷面水質變化過程,(3) 流域水環境監控與預警系統,(4) 流域水環境管理體系,(5) 流域水環境風險應急預案。 6 太湖流域水環境綜合治理 6.1 太湖流域水系規劃 太湖流域具有完整水系系統,主要是由少部分山丘區自然匯水河道和大部分復雜河網所構成。長期以來,太湖流域水系規劃建設主要是從防洪和航運角度進行的,現在的流域水系對水環境保護和治理有重大影響,高密度河流為污染物輸移擴散提供了便捷的通道,增加了治理污染的復雜性和困難性。特別是方便的水資源取用帶來大量的污水排放量,甚至連排污口影響范圍和程度都難以識別認定。 6.2 太湖流域水功能區劃和污染物容量總量控制方案 太湖流域主要河流和湖泊已經劃定了明確的水功能區,制定了明確的水質保護目標。藉助於復雜的河網區水嘩績糕啃蕹救革尋宮默量和水質耦合模型,計算了河湖水域允許納污能力,確定了污染物容量總量控制方案,提出了污染物削減意見和對策措施。 太湖流域復雜河網及湖泊系統水量水質耦合模擬模型,模擬計算流域系統水動力和水質變化過程,制定了污染源治理、河湖水環境整治和流域系統水力調控方案。 6.3 太湖流域面污染源截留控制和去除示範研究 太湖流域與其它流域一樣,主要污染源有點污、面源和內源,由於雨水充分、農民生活水準高、農田產量大,產生面污染源的單位面積負荷遠大於其它流域。面污染源控制和治理直接關繫到太湖富營養化水平,也是我國流域水環境綜合治理中控源的重點和難點。 在國家「十五」 「863」項目的資助下,我們在西太湖宜興大浦鎮境內進行全面研究和技術開發。在流域的層面上,以區域源頭控制為根本,以系統生態截留為重點,以水系水力調控為突破,以溝渠河流凈化為依託,以流域生態整體修復為目標,實現「區域減源、系統截留、水系調控、水域凈化、生態修復」的流域水環境綜合治理總體戰略。構建了「面源污染源頭減量和截留、溝渠濕地和河道污染控制、河口區湖濱濕地生態修復」三級系統,實施後主要河道的水質明顯改善,示範區整體環境得到明顯改善,取得了顯著效果和可以廣泛推廣應用的技術。 6.4 引水改善水環境質量的關鍵問題 引水改善水環境質量是國內外最常見的方法,引水對污染物的稀釋容量將明顯提高,水動力條件改變加快了污染物的混合,將提高局部水域凈污能力,在我國現階段經濟條件和人們環境意識情況下,採用引水來改善局部水質是經濟的。引(調)水改善水質效果好,但倍受爭議:(1) 在水動力的作用下,水體污染物發生轉移,影響其它水域的水環境質量(污染轉移問題);(2) 水體流速加快,容易引起河床底泥浮懸,造成水體二次污染;(3) 引水使水流加快,導致污染物與河網區水生植物的接觸時間縮短,污染物的截留吸附量減少;(4) 引用大量的清潔水去稀釋污染,對水資源的優化配量和合理使用是不利的。而且關鍵性技術問題研究較少,很多問題無法解釋、內部機理尚不清楚、綜合效應難以評判。 目前,「引江濟太」、「引江濟巢」等重大工程正在規劃和准備實施之中,因此,必須對調水引流的關鍵性技術問題進行研究,更好地指導引水改善水環境質量工程的實施工作。太湖流域調水引流工程的必須要研究解決的主要內容和核心技術主要包括:(1) 平原河網區引水河流系統與原自然河網水系流量、水位和水質協同關系,(2) 引水水位頂托區域水流的水環境質量改善方法,(3) 引水河道水體推流、混合和受納水域污水雲團輸移規律,(4) 引水水動力條件變化引起的底泥沉浮規律,(5) 引水河道和受水區環境容量和凈污能力變化規律,(6) 引水引起水域生物交換的生態效應,(7) 受水區生態風險分析方法,(8) 區域水量水質聯合運行系統,(9) 輸水河道的污染控制系統,(10) 引水與防洪風險評估,(11) 輸水廊道生態修復原理。 6.5 引江濟太工程的總體戰略 (1) 近期:在污染源控制和治理尚未達到要求期間,通過應急調水迅速改善太湖局部區域和部分河網水環境質量。但應注意近期方案仍存在污染物轉移、部分河網區污染水體頂托等缺點。 (2) 遠期:在污染源控制和治理達到要求期間,通過引水或動力調水實現流域河網和湖泊水體有序流動,提高水體凈化能力和增加水環境容量,改變因水利工程閘壩阻斷而造成的水體滯流和水質惡化的狀況,確保河網和湖泊水體流動和水環境質量。 7 流域水環境綜合治理中需要解決的水利科學問題 流域水環境綜合治理中存在以下水利科學問題:(1) 流域河流、湖庫、濕地系統宏觀格局與支撐能力,(2) 河流縱橫形態的生態影響規律,(3) 流域不同尺度河流連通和生態基流維持,(4) 不同水動力條件下污染物輸移過程和生態效應,(5) 流域污染物容量總量控制和科學增容強凈,(6) 水資源生態配置與節水減污社會建設,(7) 農田溝渠生態化與生態型灌區建設,(8) 河道硬質化的生態效應及改進和修復技術,(9) 防洪堤壩安全穩定與生態化協同技術,(10) 水利工程與生態工程協同建設、運行和管理,(11) 河流水生植物修復對行洪能力影響規律及對策,(12) 調水引流和水力調控的科學原理與生態風險。
『玖』 誰有關於河道生態流量的調研方案
調研背景和意義
隨著社會經濟的發展,人類對水資源的開發利用量不斷增大,致使對生態系統的干擾不斷加大,甚至超出生態系統的承受能力。我省開發建設的小型水電站多以引水式為主,水電站運行過程中,受電站調度運行影響,原河段水流減少,到枯水季節易形成減水河段。減水河段的出現可能會給生態系統帶來一系列的危害,河道流量減少導致河流自凈作用減弱,河水水質出現惡化,給當地的人畜健康和生命造成威脅。同時,沿河居民生活、農田灌溉用水無法得到保障,對當地的旅遊發展業造成不良影響,制約著當地社會經濟的發展。
人類在對河流進行開發建設的過程中,過去考慮較多的是對區域經濟的發展和發電效益,而對保護生態水環境考慮的較少,很少考慮壩下游生態和水環境保護的要求,導致水生態系統受到嚴重破壞。生態、環境的保護是國家可持續發展的根本性問題。因此,對河道生態系統的調研,以便保護和恢復生態系統功能的研究工作顯得尤為重要而迫切。
2、調研目的
通過對某引水式水電站附近河道上下游的水文、氣象,生態狀況,灌溉、防洪以及工農業生產等方面深入的調研,計算維持河道生態系統功能穩定所需的最小生態需水;探討適合我省各流域河流特性的最小生態需水的計算方法和理論並提出相應的生態修復補救措施。