人民河水库
Ⅰ 所有的水库.河流.公共区域田是不是不准私人承包了2018年国家有专项文件吗
正确符合规定承包的水库、河流来做养殖是合法的!
1,保护性开发利用
《中华人民共和国水法》第六条中指出“国家鼓励单位和个人依法开发、利用水资源,并保护其合法权益。开发、利用水资源的单位和个人有依法保护水资源的义务”。这句话的可以从两个方面来理解:
(1)建议先弄清楚你看中的水库是什么性质的,如果是灌溉发电性质的拿就可以用于水产养殖,但是如果是当地的水源地,那就是不允许被开发的。
(2)如果你承包成功,日后就必须在保护水资源环境的基础上进行养殖。为什么2017年会有人谣传不能再承包水库当鱼塘了?其实很容易理解,大多数养殖户承包水库、河流以后没有进行一个生态环境保护的科学管理,弄的整个水库都被污染了,肥水菌种胡乱瞎放搞的到处都是各种藻类,一个水库又臭又脏,就这样,谁还敢让你承包?免不了当地的水利局要来找你麻烦罚你款。
2.收费范围
《水法》第七条指出“国家对水资源依法实行取水许可制度和有偿使用制度,但农村集体经济组织及其成员使用本集体经济组织的水塘、水库中的水除外”。这个额,这么说呢,除了界限明显标有国家所有的河流滩涂要收钱外,其实也有很多村子里的人觉得河滩是自家村里的公共财产。所以如果你想承包这些区域的河道,小编建议你带上各种证去水利局审批完了以后最好是把村子那边的管事人也“打点”一下。
真相我们是知道了,就是承包水库、河流进行养殖是合法的,但是事情到这儿还没完:承包是到位了,但是小编啊,老是有人觊觎我家大鱼咋办?
别怕!小编这就告诉你:禁钓事项
根据《物权法》规定“用益物权人对他人所有的不动产或者动产,依法享有占有、使用和收益的权利。”这项法规对承包了水库、河流养鱼的养殖户来说其实是个保护盾,你承包成功就享有用益物权,别人没有经过你的同意就跑来钓鱼的话你是可以告他的。不过平时三两个人随偶尔来钓鱼的情况实在是太过平常,很多养殖户选择立个“严禁垂钓”的牌子在塘边,但你要是背时遇到那种赖子就是不同招呼要来钓鱼,小编建议可以根据他钓鱼对你造成的损失比例来斟酌是否要上诉。
Ⅱ 四川省广元市旺苍县龙凤乡人民村柏树河水库新建项目招标情况
柏树河水库位于人民村二组两山之间。我小时候自建未成。一晃三十年过去了。但愿能修建成功
Ⅲ 北京有几座水库
北京现有库容在8000万立方米以上的水库有5座,它们是密云水库、官厅水库、怀柔水库、海子水库、十三陵水库,号称北京的“五大水库”。
密云水库,是20世纪50年代末60年代初,为防止潮白河的洪水灾害,发展水利、灌溉农业,利用密云县中部的燕洛盆地修建而成的,库容达43.75亿立方米的水库。它既是北京最大的水库,也是华北地区最大的人工湖泊,随着北京城市的日益发展,密云水库已成了城市生活用水的重要供应地。
官厅水库,这是新中国成立后,北京所进行的最大一项水利工程。这是因为,永定河河水暴涨暴落,含泥沙量又多,常常造成河堤冲决,危害农田和人民的生命财产安全。而官厅以上流域面积约占永定河流域面积的80%,也是永定河泥沙的主要来源地,遂决定在官厅以上的怀来盆地修筑水库,并于1955年建成,水库的设计库容为22.7亿立方米。官厅水库建成之后,完全改变了永定河原先河水“暴涨暴落、多泥沙、善淤决、好迁徙”的水文特征,中、下游也再不受永定河泛滥之苦,而且成了北京城市水源的重要供应地。
怀柔水库,是20世纪50年代末建在原怀柔县西南山间盆地中的一座水库,其库容为1.15亿立方米。其间以京密引水渠与密云水库相连,形成了同时为北京城提供生活引用水源的“姐妹库。”
海子水库,位于平谷区城东。初建于1959年,1973年改建,库容1.2亿立方米。现改为“金海湖公园”,1990年北京召开亚运会时的水上项目,在此举行。
十三陵水库,是在1958年“大跃进”期间兴建的。以毛泽东为首的中央领导人,都参加水库的建设工程,设计库容8100立方米。由于它位于明十三陵陵域的东南,因之备受世人关注。1995年利用水库中的孤山建成“九龙宫”,供游人游览观赏。
Ⅳ 山西最大的水库是什么水库
汾河水库位于山西省太原市西北娄烦县境内下静游村至下石家庄之间.南北长15公里,东西宽5公里,总面积32平方公里.汾河是发源于山西省境内的宁武县关管涔山,是山西省境内黄河水系的第一条大河。 汾河水库是由国家水利部北京水利勘探设计院规划,苏联专家古列耶夫,马索科夫帮助设计的,容量为七亿立方米,相当于十三陵水库容量的十三倍半.最高水线海拔1131.4米. 汾河水库于1958年11月25日,汾河水库总指挥董登瀛宣布汾河水库全面动工,1958年7月拦洪蓄水,1960年竣工.费时二年,投资6000万元.参加修建水库的有部队,农民,工人,大专院校,中小学师生,人数达四万八千.当时主要以共产主义的义务劳动进行,基本上不计报酬. 水库主体工程--大坝,主坝坝型为均质土坝,采用土物质结构为世界第一先例.坝高61.4米,底宽485米,顶宽6米.坝长1002米,号称"第二官厅水库"。坝基岩石为花岗片麻岩和角闪片岩,坝体工程量430万立米。主要泄洪方式为岸边溢洪道,大坝特点是水中倒土筑坝。目前是世界上最高的人工水中填黄土均质坝,多次受到世界大坝委员会的关注。 汾河水库控制流域面积5268平方公里,多年平均流量21.9秒立米,设计洪水流量3670秒立米,总库容7亿立米,设计灌溉面积149.2万亩。库区占据以旧娄烦镇为中心的土地面积5万亩,其中耕地3万亩,果园,菜园,苇田1万亩.大部分为水浇良田.移民涉及5个乡镇,28个自然村,2万多人口.娄烦县人民付出如此巨大的贡献和牺牲,给下游沿汾河两岸淤造了大量良田,利用蓄水灌溉了晋中,晋南地区数十县的150多万亩田园,给省城太原工业和人民生活用水提供了充足的水源,汾河水库的建成,也给娄烦县增添了难得的水产资源和艳丽多娇的旅游景点.库中养浅,中,深层水鱼.品种有鲤,鲫,黄,草,娃娃鱼等十多种,并有大量的龙虾,龟,鳖等水生动物.
Ⅳ 河流水库水源保护区划分
饮用水水源保护区划分技术规范
前 言
为贯彻《中华人民共和国水污染防治法》和《中华人民共和国水污染防治法实施细则》,防治饮用水水源地污染,保证饮用水安全,制定本标准.
本标准规定了地表水饮用水水源保护区、地下水饮用水水源保护区划分的基本方法和饮用水水源保护区划分技术文件的编制要求.
本标准为首次发布.
本标准为指导性标准.
本标准由国家环境保护总局科技标准司提出.
本标准起草单位:中国环境科学研究院.
本标准国家环境保护总局2007 年1 月9 日批准.
本标准自2007 年2 月1 日起实施.
本标准由国家环境保护总局解释.
饮用水水源保护区划分技术规范
1 范围
本标准适用于集中式地表水、地下水饮用水水源保护区(包括备用和规划水源地)的划分.农村及分散式饮用水水源保护区的划分可参照本标准执行.
2 规范性引用文件
本标准内容引用了下列文件中的条款.凡是不注日期的引用文件,其有效版本适用于本标准.
GB 3838-2002 地表水环境质量标准
GB 5749 生活饮用水卫生标准
GB 15618 土壤环境质量标准
GB/T14848 地下水质量标准
3 术语和定义
下列术语和定义适用于本标准.
3.1 饮用水水源保护区
指国家为防治饮用水水源地污染、保证水源地环境质量而划定,并要求加以特殊保护的一定面积的水域和陆域.
3.2 潮汐河段
指河流中受潮汐影响明显的河段.
3.3 潜水
指地表以下第一个稳定隔水层以上,具有自由水面的地下水.
3.4 承压水
指充满两个隔水层之间的含水层中的地下水.
3.5 孔隙水
指赋存并运移于松散沉积物颗粒间孔隙中的地下水.
3.6 裂隙水
指赋存并运移于岩石裂隙中的地下水.
HJ/T338—2007
3.7 岩溶水
指赋存并运移于岩溶化岩层中的地下水.
4 总则
4.1 水源保护区的设置与划分
4.1.1 饮用水水源保护区分为地表水饮用水源保护区和地下水饮用水源保护区.地表水饮用水源保护区包括一定面积的水域和陆域.地下水饮用水源保护区指地下水饮用水源地的地表区域.
4.1.2 集中式饮用水水源地(包括备用的和规划的)都应设置饮用水水源保护区;饮用水水源保护区一般划分为一级保护区和二级保护区,必要时可增设准保护区.
4.1.3 饮用水水源保护区的设置应纳入当地社会经济发展规划和水污染防治规划;跨地区的饮用水水源保护区的设置应纳入有关流域、区域、城市社会经济发展规划和水污染防治规划.
4.1.4 在水环境功能区和水功能区划分中,应将饮用水水源保护区的设置和划分放在最优先位置;跨地区的河流、湖泊、水库、输水渠道,其上游地区不得影响下游(或相邻)地区饮用水水源保护区对水质的要求,并应保证下游有合理水量.
4.1.5 应对现有集中式饮用水水源地进行评价和筛选;对于因污染已达不到饮用水水源水质要求,经技术、经济论证证明饮用水功能难以恢复的水源地,应采取措施,有计划地转变其功能.
4.1.6 饮用水水源保护区的水环境监测与污染源监督应作为重点纳入地方环境管理体系中,若无法满足保护区规定水质的要求,应及时调整保护区范围.
4.2 划分的一般技术原则
4.2.1 确定饮用水水源保护区划分的技术指标,应考虑以下因素:当地的地理位置、水文、气象、地质特征、水动力特性、水域污染类型、污染特征、污染源分布、排水区分布、水源地规模、水量需求.其中:
地表水饮用水源保护区范围应按照不同水域特点进行水质定量预测并考虑当地具体条件加以确定,保证在规划设计的水文条件和污染负荷下,供应规划水量时,保护区的水质能满足相应的标准.
地下水饮用水源保护区应根据饮用水水源地所处的地理位置、水文地质条件、供水的数量、开采方式和污染源的分布划定.各级地下水源保护区的范围应根据当地的水文地质条件确定,并保证开采规划水量时能达到所要求的水质标准.
4.2.2 划定的水源保护区范围,应防止水源地附近人类活动对水源的直接污染;应足以使所选定的主要污染物在向取水点(或开采井、井群)输移(或运移)过程中,衰减到所期望的浓度水平;在正常情况下保证取水水质达到规定要求;一旦出现污染水源的突发情况,有采取紧急补救措施的时间和缓冲地带.
4.2.3 在确保饮用水水源水质不受污染的前提下,划定的水源保护区范围应尽可能小.
4.3 水质要求
4.3.1 地表水饮用水源保护区水质要求
4.3.1.1 地表水饮用水源一级保护区的水质基本项目限值不得低于GB 3838-2002 中的Ⅱ类标准,且补充项目和特定项目应满足该标准规定的限值要求.
4.3.1.2 地表水饮用水源二级保护区的水质基本项目限值不得低于GB 3838-2002 中的Ⅲ类标准,并保证流入一级保护区的水质满足一级保护区水质标准的要求.
4.3.1.3 地表水饮用水源准保护区的水质标准应保证流入二级保护区的水质满足二级保护区水质标准的要求.
4.3.2 地下水饮用水源保护区水质要求
地下水饮用水源保护区(包括一级、二级和准保护区)水质各项指标不得低于GB/T14848 中的Ⅲ类标准.
5 河流型饮用水水源保护区的划分方法
5.1 一级保护区
5.1.1 水域范围
5.1.1.1 通过分析计算方法,确定一级保护区水域长度.
5.1.1.1.1 一般河流型水源地,应用二维水质模型计算得到一级保护区范围,一级保护区水域长度范围内应满足GB 3838-2002Ⅱ类水质标准的要求.二维水质模型及其解析解参见附录B,大型、边界条件复杂的水域采用数值解方法,对小型、边界条件简单的水域可采用解析解方法进行模拟计算.
5.1.1.1.2 潮汐河段水源地,运用非稳态水动力-水质模型模拟,计算可能影响水源地水质的最大范围,作为一级保护区水域范围.
5.1.1.1.3 一级保护区上、下游范围不得小于卫生部门规定的饮用水源卫生防护带1) 范围.
5.1.1.2 在技术条件有限的情况下,可采用类比经验方法确定一级保护区水域范围,同时开展跟踪监测.若发现划分结果不合理,应及时予以调整.
5.1.1.2.1 一般河流水源地,一级保护区水域长度为取水口上游不小于1000 米,下游不小于100 米范围内的河道水域.
5.1.1.2.2 潮汐河段水源地,一级保护区上、下游两侧范围相当,范围可适当扩大.
5.1.1.3 一级保护区水域宽度为5 年一遇洪水所能淹没的区域.通航河道:以河道中泓线为界,保留一定宽度的航道外,规定的航道边界线到取水口范围即为一级保护区范围;非通航河道:整个河道范围.
5.1.2 陆域范围
一级保护区陆域范围的确定,以确保一级保护区水域水质为目标,采用以下分析比较确定陆域范围.1)卫监发[2001]161 号文 生活饮用水集中式供水单位卫生规范
5.1.2.1 陆域沿岸长度不小于相应的一级保护区水域长度.
5.1.2.2 陆域沿岸纵深与河岸的水平距离不小于50 米;同时,一级保护区陆域沿岸纵深不得小于饮用水水源卫生防护2) 规定的范围.
5.2 二级保护区
5.2.1 水域范围
5.2.1.1 通过分析计算方法,确定二级保护区水域范围.
5.2.1.1.1 二级保护区水域范围应用二维水质模型计算得到.二级保护区上游侧边界到一级保护区上游边界的距离应大于污染物从GB 3838-2002Ⅲ类水质标准浓度水平衰减到GB3838-2002Ⅱ类水质标准浓度所需的距离.二维水质模型及其解析解参见附录B,大型、边界条件复杂的水域采用数值解方法,对小型、边界条件简单的水域可采用解析解方法进行模拟计算.
5.2.1.1.2 潮汐河段水源地,二级保护区采用模型计算方法;按照下游的污水团对取水口影响的频率设计要求,计算确定二级保护区下游侧外边界位置.
5.2.1.2 在技术条件有限情况下,可采用类比经验方法确定二级保护区水域范围,但是应同时开展跟踪验证监测.若发现划分结果不合理,应及时予以调整.
5.2.1.2.1 一般河流水源地,二级保护区长度从一级保护区的上游边界向上游(包括汇入的上游支流)延伸不得小于2000 米,下游侧外边界距一级保护区边界不得小于200 米.
5.2.1.2.2 潮汐河段水源地,二级保护区不宜采用类比经验方法确定.
5.2.1.3 二级保护区水域宽度:一级保护区水域向外10 年一遇洪水所能淹没的区域,有防洪堤的河段二级保护区的水域宽度为防洪堤内的水域.
5.2.2 陆域范围
二级保护区陆域范围的确定,以确保水源保护区水域水质为目标,采用以下分析比较确定.
5.2.2.1 二级保护区陆域沿岸长度不小于二级保护区水域河长.
5.2.2.2 二级保护区沿岸纵深范围不小于1000 米,具体可依据自然地理、环境特征和环境管理需要确定.对于流域面积小于100 平方公里的小型流域,二级保护区可以是整个集水范围.
5.2.2.3 当面污染源为主要水质影响因素时,二级保护区沿岸纵深范围,主要依据自然地理、环境特征和环境管理的需要,通过分析地形、植被、土地利用、地面径流的集水汇流特性、集水域范围等确定.
5.2.2.4 当水源地水质受保护区附近点污染源影响严重时,应将污染源集中分布的区域划入二级保护区管理范围,以利于对这些污染源的有效控制.
5.3 准保护区
根据流域范围、污染源分布及对饮用水水源水质影响程度,需要设置准保护区时,可参照二级保护区的划分方法确定准保护区的范围.2)卫监发[2001]161 号文 生活饮用水集中式供水单位卫生规范
6 湖泊、水库饮用水水源保护区的划分方法
6.1 水源地分类
依据湖泊、水库型饮用水水源地所在湖泊、水库规模的大小,将湖泊、水库型饮用水水源地进行分类,分类结果见表1.
表1 湖库型饮用水水源地分类表
水源地类型 水源地类型
水库 小型,V<0.1 亿m3
湖泊 小型,S<100km2
中型,0.1 亿m3≤V<1 亿m3 大中型,S≥100km2
大型,V≥1 亿m3
注:V 为水库总库容;S 为湖泊水面面积.
6.2 一级保护区
6.2.1 水域范围
6.2.1.1 小型水库和单一供水功能的湖泊、水库应将正常水位线以下的全部水域面积划为一级保护区.
6.2.1.2 大中型湖泊、水库采用模型分析计算方法确定一级保护区范围.
6.2.1.2.1 当大、中型水库和湖泊的部分水域面积划定为一级保护区时,应对水域进行水动力(流动、扩散)特性和水质状况的分析、二维水质模型模拟计算,确定水源保护区水域面积,即一级保护区范围内主要污染物浓度满足GB 3838-2002Ⅱ类水质标准的要求.具体方法参见附录B,宜采用数值计算方法.
6.2.1.2.2 一级保护区范围不得小于卫生部门规定的饮用水源卫生防护3) 范围.
6.2.1.3 在技术条件有限的情况下,采用类比经验方法确定一级保护区水域范围,同时开展跟踪验证监测.若发现划分结果不合理,应及时予以调整.
6.2.1.3.1 小型湖泊、中型水库水域范围为取水口半径300 米范围内的区域.
6.2.1.3.2 大型水库为取水口半径500 米范围内的区域.
6.2.1.3.3 大中型湖泊为取水口半径500 米范围内的区域.
6.2.2 陆域范围
湖泊、水库沿岸陆域一级保护区范围,以确保水源保护区水域水质为目标,采用以下分析比较确定.
6.2.2.1 小型湖泊、中小型水库为取水口侧正常水位线以上200 米范围内的陆域,或一定高程线以下的陆域,但不超过流域分水岭范围.
6.2.2.2 大型水库为取水口侧正常水位线以上200 米范围内的陆域.
6.2.2.3 大中型湖泊为取水口侧正常水位线以上200 米范围内的陆域.3)卫监发[2001]161 号文 生活饮用水集中式供水单位卫生规范
6.2.2.4 一级保护区陆域沿岸纵深范围不得小于饮用水水源卫生防护范围.
6.3 二级保护区
6.3.1 水域范围
6.3.1.1 通过模型分析计算方法,确定二级保护区范围.二级保护区边界至一级保护区的径向距离大于所选定的主要污染物或水质指标从GB 3838-2002Ⅲ类水质标准浓度水平衰减到GB 3838-2002Ⅱ类水质标准浓度所需的距离,具体方法参见附录B,宜采用数值计算方法.
6.3.1.2 在技术条件有限的情况下,采用类比经验方法确定二级保护区水域范围,同时开展跟踪验证监测.若发现划分结果不合理,应及时予以调整.
6.3.1.2.1 小型湖泊、中小型水库一级保护区边界外的水域面积设定为二级保护区.
6.3.1.2.2 大型水库以一级保护区外径向距离不小于2000 米区域为二级保护区水域面积,但不超过水面范围.
6.3.1.2.3 大中型湖泊一级保护区外径向距离不小于2000 米区域为二级保护区水域面积,但不超过水面范围.
6.3.2 陆域范围
二级保护区陆域范围确定,应依据流域内主要环境问题,结合地形条件分析确定.
6.3.2.1 依据环境问题分析法
6.3.2.1.1 当面污染源为主要污染源时,二级保护区陆域沿岸纵深范围,主要依据自然地理、环境特征和环境管理的需要,通过分析地形、植被、土地利用、森林开发、地面径流的集水汇流特性、集水域范围等确定.二级保护区陆域边界不超过相应的流域分水岭范围.
6.3.2.1.2 当水源地水质受保护区附近点污染源影响严重时,应将污染源集中分布的区域划入二级保护区管理范围,以利于对这些污染源的有效控制.
6.3.2.2 依据地形条件分析法
6.3.2.2.1 小型水库可将上游整个流域(一级保护区陆域外区域)设定为二级保护区.
6.3.2.2.2 小型湖泊和平原型中型水库的二级保护区范围是正常水位线以上(一级保护区以外),水平距离2000 米区域,山区型中型水库二级保护区的范围为水库周边山脊线以内(一级保护区以外)及入库河流上溯3000 米的汇水区域.
6.3.2.2.3 大型水库可以划定一级保护区外不小于3000 米的区域为二级保护区范围.
6.3.2.2.4 大中型湖泊可以划定一级保护区外不小于3000 米的区域为二级保护区范围.
6.4 准保护区
按照湖库流域范围、污染源分布及对饮用水水源水质的影响程度,二级保护区以外的汇水区域可以设定为准保护区.
7 地下水饮用水水源保护区的划分方法
地下水饮用水源保护区的划分,应在收集相关的水文地质勘查、长期动态观测、水源地开采现状、规划及周边污染源等资料的基础上,用综合方法来确定.
7.1 地下水饮用水水源地分类
地下水按含水层介质类型的不同分为孔隙水、基岩裂隙水和岩溶水三类;按地下水埋藏条件分为潜水和承压水两类.地下水饮用水源地按开采规模分为中小型水源地(日开采量小于5 万立方米)和大型水源地(日开采量大于等于5 万立方米).
7.2 孔隙水饮用水水源保护区划分方法
孔隙水的保护区是以地下水取水井为中心,溶质质点迁移100 天的距离为半径所圈定的范围为一级保护区;一级保护区以外,溶质质点迁移1000 天的距离为半径所圈定的范围为二级保护区,补给区和径流区为准保护区.
7.2.1 孔隙水潜水型水源保护区的划分方法
7.2.1.1 中小型水源地保护区划分
7.2.1.1.1 保护区半径计算经验公式:
R = α × K × I ×T / n …………………………(1)
式中,R—保护区半径,米;
α —安全系数,一般取150%,(为了安全起见,在理论计算的基础上加上一定量,以防未来用水量的增加以及干旱期影响造成半径的扩大);
K—含水层渗透系数,米/天;
I—水力坡度(为漏斗范围内的水力平均坡度);
T—污染物水平迁移时间,天;
n—有效孔隙度.
一、二级保护区半径可以按公式(1)计算,但实际应用值不得小于表2 中对应范围的上限值.
表2 孔隙水潜水型水源地保护区范围经验值
介质类型 一级保护区半径R(米) 二级保护区半径R(米)
细砂 30~50 300~500
中砂 50~100 500~1000
粗砂 100~200 1000~2000
砾石 200~500 2000~5000
卵石 500~1000 5000~10000
7.2.1.1.2 一级保护区
方法一:以开采井为中心,表2 所列经验值是指R 为半径的圆形区域.
方法二:以开采井为中心,按公式(1)计算的结果为半径的圆形区域.公式中,一级保护区T 取100 天.
对于集中式供水水源地,井群内井间距大于一级保护区半径的2 倍时,可以分别对每口井进行一级保护区划分;井群内井间距小于等于一级保护区半径的2 倍时,则以外围井的外接多边形为边界,向外径向距离为一级保护区半径的多边形区域(示意图参见附录C).
7.2.1.1.3 二级保护区
方法一:以开采井为中心,表2 所列经验值为半径的圆形区域.
方法二:以开采井为中心,按公式(1)计算的结果为半径的圆形区域.公式中,二级保护区T取1000 天.
对于集中式供水水源地,井群内井间距大于二级保护区半径的2 倍时,可以分别对每口井进行二级保护区划分;井群内井间距小于等于保护区半径的2 倍时,则以外围井的外接多边形为边界,向外径向距离为二级保护区半径的多边形区域(示意图参见附录C).
7.2.1.1.4 准保护区
孔隙水潜水型水源准保护区为补给区和径流区.
7.2.1.2 大型水源地保护区划分
建议采用数值模型(参见附录D),模拟计算污染物的捕获区范围为保护区范围.
7.2.1.2.1 一级保护区
以地下水取水井为中心,溶质质点迁移100 天的距离为半径所圈定的范围作为水源地一级保护区范围.
7.2.1.2.2 二级保护区
一级保护区以外,溶质质点迁移1000 天的距离为半径所圈定的范围为二级保护区.
7.2.1.2.3 准保护区
必要时将水源地补给区划为准保护区.
7.2.2 孔隙水承压水型水源保护区的划分方法
7.2.2.1 中小型水源地保护区划分
7.2.2.1.1 一级保护区
划定上部潜水的一级保护区作为承压水型水源地的一级保护区,划定方法同孔隙水潜水中小型水源地.
7.2.2.1.2 二级保护区
不设二级保护区.
7.2.2.1.3 准保护区
必要时将水源补给区划为准保护区.
7.2.2.2 大型水源地保护区划分
7.2.2.2.1 一级保护区
划定上部潜水的一级保护区作为承压水的一级保护区,划定方法同孔隙水潜水大型水源地.
7.2.2.2.2 二级保护区
不设二级保护区.
7.2.2.2.3 准保护区
必要时将水源补给区划为准保护区.
7.3 裂隙水饮用水水源保护区划分方法
按成因类型不同分为风化裂隙水、成岩裂隙水和构造裂隙水,裂隙水需要考虑裂隙介质的各向异性.
7.3.1 风化裂隙潜水型水源保护区划分
7.3.1.1 中小型水源地保护区划分
7.3.1.1.1 一级保护区
以开采井为中心,按公式(1)计算的距离为半径的圆形区域.一级保护区T 取100 天.
7.3.1.1.2 二级保护区
以开采井为中心,按公式(1)计算的距离为半径的圆形区域.二级保护区T 取1000 天.
7.3.1.1.3 准保护区
必要时将水源补给区和径流区划为准保护区.
7.3.1.2 大型水源地保护区划分
需要利用数值模型(参见附录D),确定污染物相应时间的捕获区范围作为保护区.
7.3.1.2.1 一级保护区
以地下水开采井为中心,溶质质点迁移100 天的距离为半径所圈定的范围作为水源地一级保护区范围.
7.3.1.2.2 二级保护区
一级保护区以外,溶质质点迁移1000 天的距离为半径所圈定的范围为二级保护区.
7.3.1.2.3 准保护区
必要时将水源补给区和径流区划为准保护区.
7.3.2 风化裂隙承压水型水源保护区划分
7.3.2.1 一级保护区
划定上部潜水的一级保护区作为风化裂隙承压型水源地的一级保护区,划定方法需要根据上部潜水的含水介质类型并参考对应介质类型的中小型水源地的划分方法.
7.3.2.2 二级保护区
不设二级保护区.
7.3.2.3 准保护区
必要时将水源补给区划为准保护区.
7.3.3 成岩裂隙潜水型水源保护区划分
7.3.3.1 一级保护区
同风化裂隙潜水型.
7.3.3.2 二级保护区
同风化裂隙潜水型.
7.3.3.3 准保护区
同风化裂隙潜水型.
7.3.4 成岩裂隙承压水型水源保护区划分
7.3.4.1 一级保护区
同风化裂隙承压水型.
7.3.4.2 二级保护区
不设二级保护区.
7.3.4.3 准保护区
必要时将水源的补给区划为准保护区.
7.3.5 构造裂隙潜水型水源保护区划分
7.3.5.1 中小型水源地保护区划分
7.3.5.1.1 一级保护区
应充分考虑裂隙介质的各向异性.以水源地为中心,利用公式(1),n 分别取主径流方向和垂直于主径流方向上的有效裂隙率,计算保护区的长度和宽度.T 取100 天
7.3.5.1.2 二级保护区
计算方法同一级保护区,T 取1000 天.
7.3.5.1.3 准保护区
必要时将水源补给区和径流区划为准保护区
7.3.5.2 大型水源地保护区划分
利用数值模型(参见附录D),确定污染物相应时间的捕获区作为保护区.
7.3.5.2.1 一级保护区
以地下水取水井为中心,溶质质点迁移100 天的距离为半径所圈定的范围作为一级保护区范围.
7.3.5.2.2 二级保护区
一级保护区以外,溶质质点迁移1000 天的距离为半径所圈定的范围为二级保护区.
7.3.5.2.3 准保护区
必要时将水源补给区和径流区划为准保护区.
7.3.6 构造裂隙承压水型水源保护区划分
7.3.6.1 一级保护区
同风化裂隙承压水型.
7.3.6.2 二级保护区
不设二级保护区.
7.3.6.3 准保护区
必要时将水源补给区划为准保护区.
7.4 岩溶水饮用水水源保护区划分方法
根据岩溶水的成因特点,岩溶水分为岩溶裂隙网络型、峰林平原强径流带型、溶丘山地网络型、峰丛洼地管道型和断陷盆地构造型五种类型.岩溶水饮用水源保护区划分须考虑溶蚀裂隙中的管道流与落水洞的集水作用.
7.4.1 岩溶裂隙网络型水源保护区划分
7.4.1.1 一级保护区
同风化裂隙水.
7.4.1.2 二级保护区
同风化裂隙水.
7.4.1.3 准保护区
必要时将水源补给区和径流区划为准保护区.
7.4.2 峰林平原强径流带型水源保护区划分
7.4.2.1 一级保护区
同构造裂隙水.
7.4.2.2 二级保护区
同构造裂隙水
7.4.2.3 准保护区
必要时将水源补给区和径流区划为准保护区.
7.4.3 溶丘山地网络型、峰丛洼地管道型、断陷盆地构造型水源保护区划分
7.4.3.1 一级保护区
参照地表河流型水源地一级保护区的划分方法,即以岩溶管道为轴线,水源地上游不小于1000米,下游不小于100 米,两侧宽度按公式(1)计算(若有支流,则支流也要参加计算).同时,在此类型岩溶水的一级保护区范围内的落水洞处也宜划分为一级保护区,划分方法是以落水洞为圆心,按公式(1)计算的距离为半径(T 值为100 天)的圆形区域,通过落水洞的地表河流按河流型水源地一级保护区划分方法划定.
7.4.3.2 二级保护区
不设二级保护区.
7.4.3.3 准保护区
必要时将水源补给区划为准保护区.
8 其他
8.1 如果饮用水源一级保护区或二级保护区内有支流汇入,应从支流汇入口向上游延伸一定距离,作为相应的一级保护区和二级保护区,划分方法可参照上述河流型水源地保护区划分方法划定.根据支流汇入口所在的保护区级别高低和距取水口距离的远近,其范围可适当减小.
8.2 完全或非完全封闭式饮用水输水河(渠)道均应划为一级保护区,其宽度范围可参照河流型保护区划分方法划定,在非完全封闭式输水河(渠)道、及其支流可设二级保护区,其范围参照河流型二级保护区划分方法划定.
8.3 湖泊、水库为水源的河流型饮用水水源地,其饮用水水源保护区范围应包括湖泊、水库一定范围内的水域和陆域,保护级别按具体情况参照湖库型水源地的划分办法确定.
8.4 入湖、库河流的保护区水域和陆域范围的确定,以确保湖泊、水库饮用水水源保护区水质为目标,参照河流型饮用水水源保护区的划分方法确定一、二级保护区的范围.
9 饮用水水源保护区的最终定界
9.1 为便于开展日常环境管理工作,依据保护区划分的分析、计算结果,结合水源保护区的地形、
地标、地物特点,最终确定各级保护区的界线.
9.2 充分利用具有永久性的明显标志如水分线、行政区界线、公路、铁路、桥梁、大型建筑物、水库大坝、水工建筑物、河流汊口、输电线、通讯线等标示保护区界线.
9.3 最终确定的各级保护区坐标红线图、表,作为政府部门审批的依据,也作为规划国土、环保部门土地开发审批的依据.
9.4 应按照国家规定设置饮用水水源地保护标志.
10 监督实施
本标准由县级以上人民政府环境保护行政主管部门监督实施.
Ⅵ 水库国家不允许承包,为什么现在还是在承包
国家是允许水库承包的, 但是自然河流水库的承包必须要符合当地县级以上人民政府批准内的《水域滩涂规划容》的非限养区才行。 否则就不能承包。
水库按照《水利水电工程等级划分及洪水标准》划分为大型、中型、小型水库。小型水库包括小(1)型、小(2)型水库。因兴建人不同,分为国有水库(县级以上地方人民政府兴建的水库)、自建水库(电力、供水以及其他单位兴建的水库)和集体水库(农村集体经济组织兴建的水库)几种。
(6)人民河水库扩展阅读:
根据《中华人民共和国渔业法》第十条、第十一条规定,国家所有的水库只要适于水产养殖,均可向全民所有制单位、集体所有制单位和个人承包,用于发展养殖业。
但必须经过县级人民政府、县级人民政府的渔业行政主管部门或县级人民政府指定的水库管理部门审批,方可进行承包。也就是说,私人是可以承包水库的。
Ⅶ 北碚区澄江镇运河村人民水库地址
澄江来往合川方向,收费站之前有自一条往左的小路,汽车可以通行。很早以前的事情了,以前澄江往风火山方向有一个煤矿和砖厂,溜出来一条小溪,人们便把小溪下游堵住让水位提高用作运输,就有了运河的由来,也就是所谓的水库。后来煤矿砖厂停产之后无人打理渐渐还原呈现在的溪流。
Ⅷ 荆门市最大的水库是什么河
漳河
漳河位于湖北省荆门、宜昌、襄樊三市交界处。漳河水库是在漳河上建坝拦断长江中游北岸专支流沮漳河的东支—属—漳河而成的水库群,通过3段明槽串联成整体,是的湖北省管辖的最大水库,承雨面积2212平方公里,总库容20.35亿立方米,水域104平方公里,是一座以灌溉为主,综合利用的水利工程,是中国知名的人工水库之一。它灌溉荆州、宜昌、荆门三个地、市共260.50万亩农田,是中国九个200万亩以上的大型水库灌区之一,也是湖北省重要的商品粮基地。漳河水库供应着下游几百万人民的工农业用水和生活用水。
Ⅸ 为什么人们要修建水库
修建水坝的利与弊
——水坝:大开发与大环保的双向扣问!
对水坝的需求,是对能源渴求的结果。经济的高速发展,使电力供应陡然变得紧张起来,在日益严重的环保压力面前,如何寻求清洁、持久而且高效的能源,成为21世纪世界范围内面临的难题。在欧美发达国家,核电逐渐占据上风,而在发展中国家,水坝建设则方兴未艾。
水坝带来的益处:
首先水坝可以提供电力,中国的三峡水库预计能产生的电力相当于18个核电站的发电量;在挪威,超过98%的能源来自水力,使挪威人长期从中获益。
其次,水坝还可以为灌溉、饮水、防洪、通航等提供便利。
虽然水坝有着不少好处但水坝也有着不少问题。
一旦建立了水坝便会破坏水资源分布。在印度西奥里萨邦的伯兰格区,过去许多村子都有数十个水塘。但修建水坝后,80%的水塘都不存在了,这影响着该地区粮食的减产。只有那些保留了传统的蓄水方式、保护了森林的村庄,才经受住了连年灾害的考验。
水坝建立之后还会改变降雨规律:希拉库德大坝水库改变了当地的降雨规律,因此被认为干旱是由水库引起的,因为水库的一边雨量过多,而另一边却没有雨水。所以水库给一个地区带来了繁荣,却给另一个地区带来了贫穷;给一个地区增添了绿色,却剥夺了另一个地区的生机。
不仅如此,水坝还会毁灭生物栖息地。赞比西三角洲地区是一个面积达到1.8万平方公里的巨大洪泛区。但过去一个世纪来,那个地区已没有洪水泛滥了,尤其是在赞比西河上修建了卡合拉巴萨这样的水坝之后。随着洪水的消失,湿地的承载力日益下降,无法养育过去在此栖息的大量水牛了。所以现在可以看到,三角洲上许多过去通往平原的河道已经长满了植被,河道里几乎没有水,洪水断流是三角洲现在面临干涸的主要原因。
水坝的建立还会毁灭人类在洪泛区的生存条件。过去两三年发一次洪水,人们就都离开洪泛区搬到高处去住,等洪水退了之后,再返回到洪泛区继续日常的生活。但是修建水坝后,这种日子一去不复返了。科学家们认为:每年的洪水泛滥不仅能使赞比西下游的数十万人受益,而且还能在三角洲中恢复对许多濒危物种来说极为重要的栖息地,挽救岸边岌岌可危的红树林。
对水坝的危害,我认为可以采取以下措施:
1.修建水坝应尽量避免造成大量的移民搬迁。
2.修建鱼梯,以保护鱼类的回游。
3.加强公众参与,让那些受到负面影响的人们首先是这类项目的受益者。
4.水坝按照每年的传统时间来放水以重建自然的季节性河流洪泛。