生态系统对
㈠ 人类活动对生态系统有哪些方面的影响
深海采油:采油、油泄漏导致环境污染,油泄漏会危及海洋生命专
过度打渔:过度打渔导属致鱼类濒危
污水排放:使水体富营养化,导致微生物过量繁殖,引发赤潮、水华,导致鱼类缺乏氧气死亡
使用农药:农药会沿食物链富集,例如DDT会导致鱼类死亡
二氧化硫:二氧化硫导致酸雨的元凶,酸雨会杀死水中的浮游生物,减少鱼类食物来源,破坏水生生态系统
㈡ 下列哪一生态系统对其他生态系统具有很强的依赖性()A.农田生态系统B.草原生态系统C.城市生态系
城市生态系统中人类起着重要的支配作用.植物的种类和数量少.消费者主要是专人类,而不是野生动物.由于人属口密集,排放的污水、废气和固体废弃物多,容易产生环境污染问题.因此,该生态系统的特点是能量和物质代谢强度高,对其他生态系统具有很大的依赖性,是最脆弱的生态系统.
故选:C.
㈢ 生态系统的功能
1.能量流动
植物和某些自养性细菌通过光合作用,将太阳能以有机化合物的形式固定下来,然后,经过不同类型的食物链为众多的消费者消耗或转换为其他形式的能量。整个能量流动过程是逐级消耗的,不会循环。
2.物质循环
生态系统中物质循环和能量流动总是相伴随行。能量流动是单向流动,最后转换为热能被消耗。而物质流动则是永恒循环不息,生产者在吸收太阳能的同时,将无机物转换为有机化合物,这些有机物直接或间接变成有机碎屑,被分解者分解成无机物返回非生物环境,又可被生产者利用,进行循环。物质循环的类型很多,这里主要介绍碳循环、氧循环和氮循环。
(1)碳和氧循环
有机物干重的49%由碳元素组成。绿色植物进行光合作用的同时,将大气中的CO2固定为有机物,碳循环就开始进行。生产者(绿色植物和自养菌)、消费者(各种动物)、分解者(各类细菌和真菌)通过呼吸将CO2 排回大气。生产者和消费者死后,最终尸体被分解者把蛋白质、脂肪和碳水化合物分解为CO2、水和无机盐,其中CO2 重新返回大气。在漫长的地质时期中,碳循环始终在进行,其中一部分碳,会以石灰岩(CaCO3)的形式被固定下来,经后期的岩溶作用,部分CO2 会向大气释出;而另一部分碳,则会以煤或石油的形式储存起来,经人类利用或通过自然降解后变成CO2 重新返回大气进行循环,使大气中CO2 含量增加。
动、植物呼吸时需要大气中的O2,呼出CO2。绿色植物进行光合作用时,则产生O2释放到大气和水中。现今,大气中大部分的O2是生物演化过程中植物长期生产积累的结果。绿色植物不仅能在光合作用下产生O2,而且能固定碳,维持着碳、氧平衡。因此,保护和增加绿色植物是降低大气中CO2、增加O2含量最有效的方法。
(2)氮循环
在大气中N2的占78%,这些游离N2不能被大多数生物利用。氮元素必须以铵盐、亚硝酸盐和硝酸盐的形式被植物根系吸收。N2转变为铵盐、亚硝酸盐和硝酸盐的过程,称为硝化作用,这一过程由固氮菌、蓝绿藻和根瘤菌来完成。进入植物体内的铵盐和硝酸盐,经生物化学反应与碳结合,形成氨基酸,进而合成为蛋白质和核酸,与植物体内的其他物质共同组成植物有机体。动植物死后,微生物将蛋白质分解为氨基酸,进而分解为氨、CO2和水,这一过程称为氨化过程,也叫反硝化作用。进入土壤中的氨还能再次被植物利用。在厌氧条件下,反硝化作用强烈。
自然界中,生物的硝化作用过程和反硝化作用过程处于平衡状态。大面积破坏植被和工业大规模生产含氮化工产品均会引起自然界氮平衡的破坏。
3.生态系统的信息专递
生态系统中还存在有机体之间的信息传递。信息传递将生态系统的各个组成部分联系起来,成为一个整体,具有调剂系统稳定的功能。目前已知的信息传递方式主要有营养信息、物理信息、化学信息和行为信息。
营养信息:是一种通过营养交换的形式,在一个个体或种群与另一个个体或种群之间传递信息。食物链就是营养信息传递的代表。
物理信息:是以物理过程传递的信息,包括声、光、颜色等。例如,动物发出不同的声音将感受的环境信息告知同类或是向其他动物发出威胁的信号;花以鲜艳的颜色向蝴蝶发出授粉的信息;萤火虫通过闪光来识别同伴等。
化学信息:生物产生的代谢物质,如酶、生长素、性诱激素、香油精不饱和内脂等都能传递信息。例如,狗通过尿等排泄物来标定路线;老虎利用排泄物标定自己的势力范围;动物发情期,雌性发出性诱激素,吸引雄性;狗、熊猫等哺乳动物仅凭幼崽身上粘有自己排泄物的气味来判别亲情关系等。
行为信息:同一种群中,个体之间用肢体动作相互传递信息。例如,蚂蚁、蜜蜂用不同的肢体动作告知同伴食物的所在地及其他信息;丹顶鹤用翩翩的舞姿向异性示好等。
4.生态系统的服务功能
生态系统为人类提供了必不可少的物质资源和生存环境,是人类社会、经济、文化发展的基石。生态系统及生态过程所产生的物质和所维持的良好生活环境,对人类与环境的服务性能称为生态系统的服务,包括持续地提供产品和生命支持功能(净化、循环和再生等)。这里提到的生态系统的服务主要是指生命支持功能,生态系统所能提供的服务项目类型很多,下面只介绍几种与水资源和环境有关的服务类型。
(1)涵养水源、减缓干旱
森林生态系统的主要功能之一,是减少雨水对地表的直接冲刷,延缓洪水的发生,增加降水对地下水的补给,涵养水源,减缓干旱。
据测定,森林林冠截留的雨水能占降水量的15%~40%,降雨量的5%~10%能被枯枝败叶层吸收。林冠截流雨量与树种生态特性有关,耐阴性树种,枝冠浓密,截流水量比阳性树种多。例如,云杉林冠能截流总雨量的30%,松林为18%,桦树林只有9%。
森林群落的根系、枝叶、土壤和地表的枯枝败叶层将雨水滞留在林地中,林内相对湿度高,空气潮湿,溪水潺流。林地中土壤疏松,透水性好,能将大部分的降水量蓄积起来。这样的林地称为水源林。每1hm2的森林含蓄的水分至少比非林地多出300m3。由于森林植物群落截留降水,大大减少地表径流,既避免了水土流失,也有效地防止江河暴涨暴落,减少洪涝灾害,对水资源有很好的调节作用。例如,1975年8月,河南省驻马店地区,突降特大暴雨,导致板桥水库和石漫滩水库崩坝,造成巨大生命财产损失。位于同一地区的薄山和东风水库,由于上游地区森林覆盖率在90%以上,虽然同样降水量超过库容,但因森林有效地截留,大大滞缓了洪水集中入库的时间,排洪流畅,两座水库却能安然无恙。
(2)保护和改善环境质量
在自然系统中,生物通过新陈代谢过程及伴随的生物氧化、还原作用,使化学元素进入循环过程,有效地防止废弃物质过多的积累,造成污染。环境中的某些有毒物质经过生物吸收和降解能够得到消除或减少,使环境质量得到改善。
植物通过光合作用,大量吸收CO2,释放出O2。1hm2的阔叶林,一天可吸收1t CO2,释放出0.73t的O2,可供1000人呼吸。生长茂盛的森林、草地空气中的含氧量要高于裸地区。
植物枝叶对烟尘和粉尘有良好的过滤和阻留作用。植物叶片表面凹凸不平,多绒毛,或分泌有黏液,能够有效地滞留粉尘。一般1hm2的松林每年能滞留36.4t的灰尘,绿地上空的空气含尘量远低于比没有绿地的街道,通常要少37%~60%。
很多树种具有吸收有害气体和杀菌的功能。例如,夹竹桃、广木兰、梧桐等植物能吸收HF;槐树、桑树、垂柳、罗汉松等树木能吸收SO2;而柏树、白皮松、雪松、樟树、紫薇等树木能分泌杀菌素,可杀灭结核菌、赤痢、伤寒、白喉等多种病菌。总之,植物群落具有良好的空气净化功能。
(3)调节与改善气候
森林内,乔木灌顶浓密郁闭,林下灌层和草本层发育,空气流动缓慢,温差较小;林内地表蒸发量较小,一般只有非林地的40%~80%,而相对湿度要比非林地高出10%~26%。植被具有良好的调节和改善气候的功能。
森林的蒸腾作用,对自然界水分循环和改善区域气候有重要作用。研究表明,1 hm2的森林每天要吸取70~100 t的地下水,其中大部分通过蒸腾回返大气;叶片吸收大量的太阳辐射,用于光合作用,水转化为蒸汽也要吸收热量。故大片森林不仅能调节气温,而且空气湿润,雾、露、霜、雪较多,使区域气候得到明显改善。例如,广东省的雷州半岛,1950年以后,造林27×104 hm2 ,覆盖率达36%。据当地气象站资料记载,造林20年后,年平均降水量增加到1855 mm,比造林前40 年的平均降水量增加了31%,蒸发量减少了75%,相对湿度增加了1.5%,改变了原先严重干旱的气候。
城市绿地能有效地调控城市气温。现代城市,人口密集,工业集中。太阳辐射和人为释放的热量,加热了布满城市的混凝土结构的建筑和道路,而因蒸发散失的热量却很少,导致出现城市气温高于郊区的热岛效应。城市周围地区和市内的绿地、树林、水面能有效地增加潜热通量,改变热量传输方向,从而达到调节城市气候的效果。研究表明,夏天,城市气温为27.5℃时,草坪气温仅为22~24.5℃,比裸露地面低6~7℃,比柏油马路低8~20.5℃;在上海,有紫藤绿化的墙面温度比裸露墙面平均温度低5℃。
(4)防风固沙
风蚀作用是我国北方和西北地区常见的一种地质灾害。风作为一种地质营力,不仅能吹失地表的土壤,形成各种风蚀地形,而且能形成和搬运沙丘,掩盖农田,使得生态环境日益恶化。强大的风力将沙尘源中的沙尘大量卷起,带至高空变成影响区域很广的沙尘暴。
覆盖率很高的草地、林地能有效地减弱风蚀作用,起到防风固沙的效果。风在穿过防护林或林地时,受到植物枝叶的阻挡,被分割成很多不通方向的小股气流,风力相互抵消,风速被显著降低,使强风变为弱风,大大地降低了风的侵蚀和搬运能力。据各地观测表明,一条10m高的林带,在其背面150m范围内,风力平均降低50%以上;250m范围内,风力平均降低30%以上。
在我国沙漠地区,每亩流动沙丘上种植240丛沙柳或沙蒿,4年后就能固定沙丘,近地表的风速将由原来的8级降为5级;而每亩种上旱柳50株、灌木和草各200丛,5年就能固定沙丘,风速减弱为3~4级。
㈣ 生态系统与人类有什么关系
城市生态学 城市生态学是以城市空间范围内生命系统和环境系统之间联系为研究对象的学科。由于人是城市中生命成分的主体,因此,城市生态学也可以说是研究城市居民与城市环境之间相互关系的科学。
城市生态学的研究内容主要包括城市居民变动及其空间分布特征,城市物质和能量代谢功能及其与城市环境质量之间的关系(城市物流、能流及经济特征),城市自然系统的变化对城市环境的影响,城市生态的管理方法和有关交通、供水、废物处理等,城市自然生态的指标及其合理容量等。可见,城市生态学不仅仅是研究城市生态系统中的各种关系,而是为将城市建设成为一个有益于人类生活的生态系统寻求良策。
城市生态系统的信息流 城市具有新闻传播网络系统,可以迅速传播大量信息。城市具有现代化的通讯设施,如电话、电报、传真、计算机网络等,能够将生产、交换、分配和消费的各个领域和环节衔接起来,高效地组织社会生产和生活。
城市的重要功能之一就是输入分散、无序的信息,输出经过加工、集中的有序的信息。在城市的输出物中,除了物质产品和废物以外,还有精神产品,这就要靠信息流来完成。报纸、广告、书刊、信件、照片、电视、电话、收音机、电脑及电脑网络等,都是信息的载体;人们的集会、交谈、讲演等,也是交流信息。一个城市信息的流量大小反映了城市的发展水平和现代化程度。
城市大气污染的主要污染物 城市大气污染的污染物主要有粉尘、二氧化硫、氮氧化物、一氧化碳、氟和氟化氢等。
粉尘 粉尘包括降尘(粒径在10 μm以上)和飘尘(粒径在10 μm以下)等颗粒性物质。降尘在重力作用下可以降落,多产生于固体破碎、燃烧残余物的结块等。刮风和沙暴也可以产生降尘。飘尘主要来自燃料燃烧过程中产生的废物,如烧煤、烧油、冶炼钢铁等都会排出大量飘尘,其中含有多种金属微粒,如铅、汞、镉、铬、钒、铁及其氧化物,对人体有毒害作用。飘尘极易通过呼吸道进入人体导致人患病。
二氧化硫 二氧化硫是大气中危害很严重的污染物,因此,常被作为大气污染的主要指标之一。二氧化硫主要是由燃烧含硫的煤和石油等燃料时产生的,有色金属冶炼厂、硫酸厂也排放大量的二氧化硫气体。
二氧化硫在空气中往往和飘尘结合在一起,进入人体后,大部分在上呼吸道与水生成亚硫酸和硫酸,对呼吸道黏膜产生强烈的刺激作用,时间久了,可引起慢性结膜炎、鼻炎、咽炎及气管炎等。硫的氧化物在空气中遇水汽生成具有腐蚀性的酸滴、酸雾或酸雨,其毒性比二氧化硫大10倍,对农作物的危害特别严重。
氮氧化物 氮氧化物包括亚硝酸、硝酸、一氧化氮、二氧化氮等多种氮的氧化物,但构成大气污染的主要是一氧化氮和二氧化氮。一氧化氮和二氧化氮主要来自矿物燃料的燃烧,氮肥厂等工厂也会产生一些。
二氧化氮可使人患慢性支气管炎、神经衰弱等疾病。近年发现二氧化氮有致癌作用,对植物的生长发育也有不良影响。
一氧化碳 据报道,现在大气中的一氧化碳,有80%是来自汽车尾气。一氧化碳危害人体,轻者可引起贫血、心脏病及呼吸道感染等慢性疾病;重者会立即死亡。
光化学烟雾 光化学烟雾是由汽车和工厂烟囱排出的氮氧化物和碳化氢,经太阳光紫外线照射而生成的一种毒性很大而且不同于一般煤烟废气的浅蓝色烟雾。光化学烟雾的主要成分是臭氧、醛类、过氧乙酰基硝酸酯、烷基硝酸盐、酮等一系列氧化剂。
光化学烟雾有强烈的刺激作用,能使人眼睛红肿,喉咙疼痛,严重者出现呼吸困难,视力衰退,头晕目眩,手足抽搐。
城市生态规划 城市生态规划是城市规划的一部分,是以生态学的理论为指导,对城市的社会、经济、技术和生态环境进行全面的综合规划,以便充分有效和科学合理地利用各种资源条件,促进城市生态系统的良性循环,使社会经济能够持续稳定地发展,为城市居民创造舒适、优美、清洁、安全的生产和生活环境。
㈤ 哪些行为会对生态系统的平衡造成影响
一、生态入侵。某些生物,由于人类有意识或无意识地带入某一适宜于其生存环境和繁衍的地区, 它的种群便不断地增加,分布区便会逐步稳定地扩展,这种过程被称为生态入侵。生态入侵种会影响到当地的生态环境, 其与当地种存在空间与资源上的竞争, 当然会对原有的食物链系造成影响和破坏。值得注意的是,并非所有的生态入侵都会造成灾难,有些入侵种通过改变自己或影响原有生态使其改变, 来参入原有的食物链关系, 从而达到与原有种和谐相处,这也可称为一种进化。 这种情况值得进一步研究以求解决现有的生态入侵灾难问题。
二、人为因素。系统的稳定或突变取决于外界的干扰强度及系统内部的抗干扰能力。生态系统具有抗外界干扰的自我调节能力,有自动平衡的倾向,但如果外界的干扰强度过大, 超过其稳定性的阈值,生态系统就会失稳而突变,外界环境变化和人类活动是生态系统的主要干扰源。由于人类位于生态金字塔的顶级位置, 对食物链产生极大的影响, 并且人类使用了非食物形态的物质, 如开采矿物能源,利用各种金属、非金属矿产资源, 使生态系统中有了非食物的物质流与能量流, 生态系统的功能因非食物物质的介入而增添新的变数。人类通过对生态系统各组分的影响, 使系统的物质和能量的流动发生改变, 从而对生态系统的结构和功能产生影响,进而导致生态系统的变化。
㈥ 什么叫生态系统
生态系统的概念是由英国生态学家坦斯利(A.G.Tansley, 1871~1955年)在1935年提出来的,他认为,“生态系统的基本概念是物理学上使用的‘系统’整体。这个系统不仅包括有机复合体,而且包括形成环境的整个物理因子复合体”。“我们对生物体的基本看法是,必须从根本上认识到,有机体不能与它们的环境分开,而是与它们的环境形成一个自然系统。”“这种系统是地球表面上自然界的基本单位,它们有各种大小和种类。”随着生态学的发展,人们对生态系统的认识不断深入。20世纪40年代,美国生态学家林德曼(R.L.Lindeman)在研究湖泊生态系统时,受到我国“大鱼吃小鱼,小鱼吃虾米,虾米吃泥巴”这一谚语的启发,提出了食物链的概念。他又受到“一山不能存二虎的启发,提出了生态金字塔的理论,使人们认识到生态系统的营养结构和能量流动的特点。今天,人们对生态系统这一概念的理解是:生态系统是在一定的空间和时间范围内,在各种生物之间以及生物群落与其无机环境之间,通过能量流动和物质循环而相互作用的一个统一整体。生态系统是生物与环境之间进行能量转换和物质循环的基本功能单位。
为了生存和繁衍,每一种生物都要从周围的环境中吸取空气、水分、阳光、热量和营养物质;生物生长、繁育和活动过程中又不断向周围的环境释放和排泄各种物质,死亡后的残体也复归环境。对任何一种生物来说,周围的环境也包括其他生物。例如,绿色植物利用微生物活动从土壤中释放出来的氮、磷、钾等营养元素,食草动物以绿色植物为食物,肉食性动物又以食草动物为食物,各种动植物的残体则既是昆虫等小动物的食物,又是微生物的营养来源。微生物活动的结果又释放出植物生长所需要的营养物质。经过长期的自然演化,每个区域的生物和环境之间、生物与生物之间,都形成了一种相对稳定的结构,具有相应的功能,这就是人们常说的生态系统。
1. 生态系统的概念
生态系统(ecosystem)是英国生态学家Tansley于1935年首先提上来的,指在一定的空间内生物成分和非生物成分通过物质循环和能量流动相互作用、相互依存而构成的一个生态学功能单位。它把生物及其非生物环境看成是互相影响、彼此依存的统一整体。生态系统不论是自然的还是人工的,都具下列共同特性:(1)生态系统是生态学上的一个主要结构和功能单位,属于生态学研究的最高层次。(2)生态系统内部具有自我调节能力。其结构越复杂,物种数越多,自我调节能力越强。(3)能量流动、物质循环是生态系统的两大功能。(4)生态系统营养级的数目因生产者固定能值所限及能流过程中能量的损失,一般不超过5~6个。(5)生态系统是一个动态系统,要经历一个从简单到复杂、从不成熟到成熟的发育过程。
生态系统概念的提出为生态学的研究和发展奠定了新的基础,极大地推动了生态学的发展。生态系统生态学是当代生态学研究的前沿。
2. 生态系统的组成成分
生态系统有四个主要的组成成分。即非生物环境、生产者、消费者和分解者。
(1)非生物环境 包括:气候因子,如光、温度、湿度、风、雨雪等;无机物质,如C、H、O、N、CO2及各种无机盐等。有机物质,如蛋白质、碳水化合物、脂类和腐殖质等。
(2)生产者(procers) 主要指绿色植物,也包括蓝绿藻和一些光合细菌,是能利用简单的无机物质制造食物的自养生物。在生态系统中起主导作用。
(3)消费者(consumers) 异养生物,主要指以其他生物为食的各种动物,包括植食动物、肉食动物、杂食动物和寄生动物等。
(4)分解者(decomposers) 异养生物,主要是细菌和真菌,也包括某些原生动物和蚯蚓、白蚁、秃鹫等大型腐食性动物。它们分解动植物的残体、粪便和各种复杂的有机化合物,吸收某些分解产物,最终能将有机物分解为简单的无机物,而这些无机物参与物质循环后可被自养生物重新利用。
3. 生态系统的结构
生态系统的结构可以从两个方面理解。其一是形态结构,如生物种类,种群数量,种群的空间格局,种群的时间变化,以及群落的垂直和水平结构等。形态结构与植物群落的结构特征相一致,外加土壤、大气中非生物成分以及消费者、分解者的形态结构。其二为营养结构,营养结构是以营养为纽带,把生物和非生物紧密结合起来的功能单位,构成以生产者、消费者和分解者为中心的三大功能类群,它们与环境之间发生密切的物质循环和能量流动。
4. 生态系统的初级生产和次级生产
生态系统中的能量流动开始于绿色植物的光合作用。光合作用积累的能量是进入生态系统的初级能量,这种能量的积累过程就是初级生产。初级生产积累能量的速率称为初级生产力(primary proctivity),所制造的有机物质则称为初级生产量或第一性生产量(primary proction)。
在初级生产量中,有一部分被植物自己的呼吸所消耗,剩下的部分才以可见有机物质的形式用于植物的生长和生殖,我们称这部分生产量为净初级生产量(net primary proction, NPP),而包括呼吸消耗的能量(R)在内的全部生产量称为总初级生产量(gross primary proction, GPP)。它们三者之间的关系是GPP=NPP+R。GPP和NPP通常用每年每平方米所生产的有机物质干重(g/m2.a)或固定的能量值(J/m2.a)来表示,此时它们称为总(净)初级生产力,生产力是率的概念,而生产量是量的概念。
某一特定时刻生态系统单位面积内所积存的生活有机物质量叫生物量(biomass)。生物量是净生产量的积累量,某一时刻的生物量就是以往生态系统所累积下来的活有机物质总量。生物量通常用平均每平方米生物体的干重(g/m2)或能值(J/m2)来表示。生物量和生产量是两个不同的概念,前者是生态系统结构的概念,而后者则是功能上的概念。如果GP-R>O,生物量增加;GP-R<O,生物量减少;GP=R,则生物量不变,其中的GP代表某一营养级的生产量。某一时期内某一营养级生物量的变化(dB/dt)可用下式推算:dB/dt=GP-R-H-D,式中H代表被下一营养级所取食的生物量,D为死亡所损失的生物量。生物量在生态系统中具明显的垂直分布现象。
次级生产是除生产者外的其它有机体的生产,即消费者和分解者利用初级生产量进行同化作用,表现为动物和其它异养生物生长、繁殖和营养物质的贮存。动物和其它异养生物靠消耗植物的初级生产量制造的有机物质或固定的能量,称为次级生产量或第二性生产量(secondary proction),其生产或固定率称次级(第二性)生产力(secondary proctivity)。动物的次级生产量可由下一公式表示:P=C-FU-R,式中,P为次级生产量,C代表动物从外界摄取的能量,FU代表以粪、尿形式损失的能量,R代表呼吸过程中损失的能量。
5. 生态系统中的分解
生态系统的分解(或称分解作用)(decomposition)是指死有机物质的逐步降解过程。分解时,无机元素从有机物质中释放出来,得到矿化,与光合作用时无机元素的固定正好是相反的过程。从能量的角度看,前者是放能,后者是贮能。从物质的角度看,它们均是物质循环的调节器,分解的过程其实十分复杂,它包括物理粉碎、碎化、化学和生物降解、淋失、动物采食、风的转移及有时的人类干扰等几乎同步的各种作用。将之简单化,可看作是碎裂、异化和淋溶三个过程的综合。由于物理的和生物的作用,把死残落物分解为颗粒状的碎屑称为碎裂;有机物质在酶的作用下分解,从聚合体变成单体,例如由纤维素变成葡萄糖,进而成为矿物成分,称为异化;淋溶则是可溶性物质被水淋洗出来,是一种纯物理过程。分解过程中,这三个过程是交叉进行、相互影响的。
分解过程的速率和特点,决定于资源的质量、分解者种类和理化环境条件三方面。资源质量包括物理性质和化学性质,物理性质包括表面特性和机械结构,化学性质如C:N比、木质素、纤维素含量等,它们在分解过程中均起重要作用。分解者则包括细菌、真菌和土壤动物(水生态系统中为水生小型动物)。理化环境主要指温度、湿度等。
6. 生态系统中的能量流动
能量是生态系统的基础,一切生命都存在着能量的流动和转化。没有能量的流动,就没有生命和生态系统。流量流动是生态系统的重要功能之一,能量的流动和转化是服从于热力学第一定律和第二定律的,因为热力学就是研究能量传递规律和能量形式转换规律的科学。
能量流动可在生态系统、食物链和种群三个水平上进行分析。生态系统水平上的能流分析,是以同一营养级上各个种群的总量来估计,即把每个种群都归属于一个特定的营养级中(依据其主要食性),然后精确地测定每个营养级能量的输入和输出值。这种分析多见于水生生态系统,因其边界明确、封闭性较强、内环境较稳定。食物链层次上的能流分析是把每个种群作为能量从生产者到顶极消费者移动过程中的一个环节,当能量沿着一个食物链在几个物种间流动时,测定食物链每一个环节上的能量值,就可提供生态系统内一系列特定点上能流的详细和准确资料。实验种群层次上的能流分析,则是在实验室内控制各种无关变量,以研究能流过程中影响能量损失和能量储存的各种重要环境因子。
在这里我们还介绍一下食物链、食物网、营养级、生态金字塔等概念。植物所固定的能量通过一系列的取食和被取食关系在生态系统中的传递,这种生物之间的传递关系称为食物链(food chains)。一般食物链是由4~5环节构成的,如草→昆虫→鸟→蛇→鹰。但在生态系统中生物之间的取食和被取食的关系错综复杂,这种联系象是一个无形的网把所有生物都包括在内,使它们彼此之间都有着某种直接或间接的关系,这就是食物网(food web)。一般而言,食物网越复杂,生态系统抵抗外力干扰的能力就越强,反之亦然。在任何生态系统中都存在着两种最主要的食物链,即捕食食物链(grazing food chain)和碎屑食物链(detrital food chain),前者是以活的动植物为起点的食物链,后者则以死生物或腐屑为起点。在大多数陆地和浅水生态系统中,腐屑食物链是最主要的,如一个杨树林的植物生物量除6%是被动物取食处,其余94%都是在枯死凋落后被分解者所分解。一个营养级(trophic levels)是指处于食物链某一环节上的所有生物种群的总和,在对生态系统的能流进行分析时,为了方便,常把每一生物种群置于一个确定的营养级上。生产者属第一营养级,植食动物属第二营养级,第三营养级包括所有以植食动物为食的肉食动物,一般一个生态系统的营养级数目为3~5个。生态金字塔(ecological pyramids)是指各个营养级之间的数量关系,这种数量关系可采用生物量单位、能量单位和个体数量单位,分别构成生物量金字塔、能量金字塔和数量金字塔。
7. 生态系统中的物质循环
生态系统的物质循环(circulation of materials)又称为生物地球化学循环(biogeochemical cycle),是指地球上各种化学元素,从周围的环境到生物体,再从生物体回到周围环境的周期性循环。能量流动和物质循环是生态系统的两个基本过程,它们使生态系统各个营养级之间和各种组成成分之间组织为一个完整的功能单位。但是能量流动和物质循环的性质不同,能量流经生态系统最终以热的形式消散,能量流动是单方向的,因此生态系统必须不断地从外界获得能量;而物质的流动是循环式的,各种物质都能以可被植物利用的形式重返环境。同时两者又是密切相关不可分割的。
生物地球化学循环可以用库和流通率两个概念加以描述。库(pools)是由存在于生态系统某些生物或非生物成分中一定数量的某种化学物质所构成的。这些库借助于有关物质在库与库之间的转移而彼此相互联系,物质在生态系统单位面积(或体积)和单位时间的移动量就称为流通率(flux rates)。一个库的流通率(单位/天)和该库中的营养物质总量之比即周转率(turnover rates),周转率的倒数为周转时间(turnover times)。
生物地球化学循环可分为三大类型,即水循环(water cycles)、气体型循环(gaseous cycles)和沉积型循环(sedimentary cycles)。水循环的主要路线是从地球表面通过蒸发进入大气圈,同时又不断从大气圈通过降水而回到地球表面,H和O主要通过水循环参与生物地化循环。在气体型循环中,物质的主要储存库是大气和海洋,其循环与大气和海洋密切相关,具有明显的全球性,循环性能最为完善。属于气体型循环的物质有O2、CO2、N、Cl、Br、F等。参与沉积型循环的物质,主要是通过岩石风化和沉积物的分解转变为可被生态系统利用的物质,它们的主要储存库是土壤、沉积物和岩石,循环的全球性不如气体型循环明显,循环性能一般也很不完善。属于沉积性循环的物质有P、K、Na、Ca、Ng、Fe、Mn、I、Cu、Si、Zn、Mo等,其中P是较典型的沉积型循环元素。气体型循环和沉积型循环都受到能流的驱动,并都依赖于水循环。
生物地化循环是一种开放的循环,其时间跨度较大。对生态系统来说,还有一种在系统内部土壤、空气和生物之间进行的元素的周期性循环,称生物循环(biocycles)。养分元素的生物循环又称为养分循环(nutrient cycling),它一般包括以下几个过程:吸收(absorption),即养分从土壤转移至植被;存留(retention),指养分在动植物群落中的滞留;归还(return),即养分从动植物群落回归至地表的过程,主要以死残落物、降水淋溶、根系分泌物等形式完成;释放(release),指养分通过分解过程释放出来,同时在地表有一积累(accumulation)过程;储存(reserve),即养分在土壤中的贮存,土壤是养分库,除N外的养分元素均来自土壤。其中,吸收量=存留量+归还量。
生物圈的相关知识
生物圈的概念,以下几点是公认的:①地球上凡是生物分布的区域都属于生物圈;②生物圈是由生物与非生物环境组成的具有一定结构和功能的统一整体,是高度复杂而有序的系统,而不是松散无序的集合;③由于生物种类的迁移性与无机环境的连续性使其结构和功能不断变化,并且不断趋于相对稳定的状态。地球上最大的生态系统是生物圈,陆地上最大的生态系统是森林生态系统,我国最大的生态系统是草原生态系统。
森林生态系统的作用
森林覆盖率是衡量一个国家和地区生态环境的重要指标。如果一个地区的森林覆盖率达到30%,并且分布比较均匀,就能够有效地调节气候,减少自然灾害的发生。森林的具体作用有以下几个方面:
①调节生物圈中O2和CO2的相对平衡 处于生长季节的每公顷阔叶林一天可吸收1000 kg的CO2,放出730 kg的O2。平均每人拥有10 m2的森林,即可以满足多氧环境的需要。
②净化空气 植物的枝叶能吸附烟尘、粉尘等污染物和SO2等有毒气体,如夹竹桃、梧桐、柳杉、槐树能吸收SO2,松树的针叶分泌物能杀死结核杆菌和白喉杆菌等。
③消除噪音 30 m宽的林带便可以吸收和降低噪音6~8分贝。
④涵养水源、保持水土、防风固沙。
⑤调节气候、增加降水、美化环境。
我国古代森林覆盖率高达60%以上,现在我国的森林覆盖率仅16.55%,人工造林面积居世界第一。
农业生态系统的原理
首先是生态系统中能量的多级利用和物质循环再生。食物链是生态系统能量流动和物质循环的主渠道,它既是一条能量转换链,也是一条物质传递链,还是一条增值链。其次农业生态系统的各种生物之间遵循相互依存、相互制约的原理。在农业生态系统中,人们利用生物种群之间的关系.对生物种群进行人为调节,增加有害生物的天敌种群,可以减轻有害生物的危害。如放养赤眼蜂防治稻纵卷叶螟,防止农药的污染。
生态农业的设计和布局主要从平面、垂直、时间、食物链等方面着手。平面设汁是在一定区域内.确定各种作物的种类和各种农业产业所占的比例及分布区域,即农业区划或农业规划布局。垂直设计是运用生态学的原理.将各种不同的种群组合在合理的复合生产系统,达到最充分、最合理地利用环境资源的目的。垂直结构包括地上和地下两部分,地上部分包括不同作物在不同层次空间上的茎、叶的合理配置,以便最大限度地利用光、热、水,气等自然资源。地下部分是复合作物的根系在不同土层中的分布,以更好地利用土壤中的水分和矿质元素。时间上的设计是根据各种农业资源的时间节律,设计出有效利用农业资源的生产格局。主要包括各种作物种群的嵌合设计,如套种、复种、育苗移栽,改变作物生长期的调控设计。食物链的设计是根据生态学的原理和当地的实际情况科学地设计农业生态系统内的食物链结构.实现对物质和能量的多级利用,提高整体经济效益。其重点是在原有的食物链中引入或增加新的环节。例如,引进天敌动物以控制有害昆虫的数量.增加新的生产环节将人们不能直接利用的有机物转化为可以直接利用的农副业产品等。
生态系统中某种生物减少引起其他物种变动情况。处于食物链中第一营养级的生物减少而导致的其他物种变动:在某食物链中,若处于第一营养级的生物减少,则该食物链中的其它生物都减少。这是因为第一营养级是其它各种生物赖以生存的直接或间接的食物来源,这一营养级生物的减少必会引起连锁反应,致使以下营养级依次减少。
“天敌”一方减少,对被食者数量变动的影响:若一条食物链中处于“天敌”地位的生物数量减少,则被食者数量因此而迅速增加,但这种增加并不是无限的。而是随着数量的增加,种群密度加大,种内斗争势必加剧,再加上没有了天敌的“压力”,被捕食者自身素质(如奔跑速度、警惕性、灵敏性等)必会下降,导致流行病蔓延,老弱病残者增多,最终造成密度减小,直至相对稳定,即天敌减少,造成被食方先增加后减少,最后趋向稳定。
若处于“中间”营养级的生物减少,另一种生物的变化情况应视具体食物链确定。研究时,按照从高营养级到低营养级的方向和顺序考虑。
生态标准原则
坚持生态标准原则,就是以自然、社会和人的和谐统一为主题,推进生态城市和环保模范城市群建设,发展循环经济,集中解决水污染、大气污染、森林覆盖率低、固体废弃物污染和局部环境脏乱差问题。对生态功能区和重点生态资源实施强制性保护。搞好中水回用,开发新水源,建设节水型城市。发展清洁能源。大规模植树造林,提高人均占有绿地水平。完善环境与发展综合决策机制,加强环保能力建设。
大量观测数据和经验表明,生态系统是生物体与气候、水、土等诸因素组成的相互制约和促进,相对平衡并有自我修复组织功能的系统。某种人为因素的介入会打破它的平衡,而一旦介入因素削弱或消失,大多数系统仍具有逐渐恢复到接近原生态状况的自我修复能力。这里要注意的是人力工程仅能作用于局部,自我修复则可以普惠广袤大地。
㈦ 关于生态系统
再复杂的生态系统也是根据本地的气候环境长期演化而来
外来物种对于本地生态系统的影响是回不可知的 它自答身的适应性或者食物链中有利的位置 如不被捕食 都会给本地生态系统造成不可逆转的改变 使生态恶化
生态系统是经过长期进化形成的,系统中的物种经过上百年、上千年的竞争、排斥、适应和互利互助,才形成了现在相互依赖又互相制约的密切关系。一个外来物种引入后,有可能因不能适应新环境而被排斥在系统之外,必须要有人的帮助才能勉强生存;也有可能因新的环境中没有相抗衡或制约它的生物,这个引进种可能成为真正的入侵者,打破平衡,改变或破坏当地的生态环境。
㈧ 生态系统对环境有什么的作用
生态系统平衡对环境有调节的作用